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Abstract

Background: Markov chain models of calcium release sites in living cells exhibit
stochastic dynamics reminiscent of the experimentally observed phenomenon of
calcium puffs and sparks. Such models often take the form of stochastic automata
networks in which the transition probabilities for each of a large number of intercellular
channel models depend on the local calcium concentration and thus the state of
nearby channels. The state-space size in such compositionally defined calcium release
site models increases exponentially as the number of channels increases, which is
referred to as “state-space explosion”.

Methods: In order to overcome the state-space explosion problem, we utilized the
idea of “coarse graining” and implemented an automated procedure that reduces the
state space by aggregating and lumping states of the full release site model. For a
given state aggregation scheme, the transition rates between reduced states are
chosen consistent with the conditional probability distribution among states within
each group. A genetic algorithm-based approach is then applied to select the state
aggregation schemes that lead to reduced models that approximate the observable
behaviors of the full model.

Results: The genetic algorithm-based approach is implemented in Matlab® and
applied to two different release site models. The approach found reduced models that
approximate the full model in the number of open channels, spark statistics, and the
jump probability matrix as a function of time.

Conclusions: A novel automated genetic algorithm-based searching technique is
implemented to find reduced calcium release site models that approximate observable
behaviors of the full Markov chain models that possess intractable state-spaces. As
compared to the full model, the reduced models produce quantitatively similar results
using significantly less computational resources.

Keywords: State space explosion, Genetic algorithms, Calcium signaling, Stochastic
automata network, Set partition, Coarse graining strategies

Background
Coarse-graining methods as a model reduction strategy

Increasingly over the years, mathematical models and computer simulation have been
used in the natural sciences and the social sciences. As more and more scientific discov-
eries from experiments are included, models and simulation approaches have been devel-
oped to bemore andmore accurate. Unfortunately, the corresponding computational cost
also gets higher. When a problem to be modeled is large in scale or possesses multiple
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scales, the complexity and dimensionality of the model may increase to unmanageable
levels of storage and computational capacity. How to reduce the computational cost with-
out losing important properties of mathematical/computational models is therefore an
important scientific question. Molecular dynamics (MD) simulation for example, is a type
of N-body simulation that allows atoms and molecules to interact for a fixed period of
time [1]. While the trajectories of atoms and molecules can be quite accurately deter-
mined by numerically solving Newton’s equations of motion for a system of interacting
particles, the computations are highly expensive [2]. To reduce the computational cost
for MD simulations, the field of coarse-grained modeling and simulation has been rapidly
expanding. Instead of explicitly representing every atom of a system, one partitions the
system into a number of groups of atoms, and then uses “pseudo-atoms” to represent each
group. The coarse-grained modeling significantly reduces the time and computational
storage requirement of MD simulations. Simulations of soft matter systems, polymer
dynamics, protein folding and many other physical or biological systems that feature the
spatiotemporal coupling between scales thus become possible [3, 4].
As another example, continuous time Markov chains have become an important mod-

eling approach over the past a few decades. Because it well describes the systems that
undergoes transitions from one state to another, it was used extensively in modeling ion
channels in cell membranes [5, 6]. However, when the collaborative behavior of a clus-
ter of these ion channels are of interest, the state space of the cluster model increases
exponentially as the number of channels increases. This combinatorial state-space explo-
sion causes some modeling approaches to become intractable. In this paper, we present
a novel approach to reduce large Markov chain models that shares the spirit of coarse-
graining methods: the state-space of the Markov chain model is partitioned into groups,
then each group is represented by a “mega-state” so that the full model is compressed into
a tractable size. The partition scheme is selected by a genetic algorithm-based approach
to preserve selected features of the full model.

Markov chain models of Ca2+ signaling

As a second messenger, calcium ions (Ca2+) play an important role in many physiologi-
cal activities. Signaling occurs when the cell is stimulated to release calcium ions (Ca2+)
from the endoplasmic/sarcoplasmic reticulum (ER/SR), the intracellular Ca2+ reservoir,
or when Ca2+ enters the cell through plasma membrane ion channels [7]. The intra-
cellular Ca2+ release which causes localized Ca2+ elevations known as puffs and sparks
arises from concerted gating of clusters of inositol 1,4,5-trisphosphate receptors (IP3Rs)
or ryanodine receptors (RyRs) on the surface of ER/SR [8–10]. For example, in cardiac
myocyte excitation-contraction coupling (ECC), the cell membrane depolarizes causing
L-type Ca2+ channels to open and the Ca2+ influx further activates RyRs located on the
SR, known as Ca2+-induced Ca2+ release (CICR) [11].
The spatial organization of IP3Rs and RyRs has been shown to be the basis of intra-

cellular Ca2+ signaling activities that are observed via confocal microfluorimetry in
cardiomyocytes, oocytes, and other cell types [10, 12, 13]. The spacing of receptor clusters
was identified as a decisive parameter for the occurrence of collective behaviors [14, 15].
From the literature, the behavior of single IP3R/RyR channel gating is often modeled

by continuous-time discrete-state Markov chains (CTMCs) [16, 17]. WhenMarkov chain
models of these channels are coupled via a Ca2+ microdomain in which the transition
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rates between the states of each channel become dependent on the states of other chan-
nels, the simulated Ca2+ channel clusters (release sites) may exhibit stochastic excitability
that is reminiscent of Ca2+ puff/sparks [6, 14, 18]. However, the number of states pos-
sessed by these compositionally defined Ca2+ release site models increases exponentially
as the number of channels increases. This combinatorial state-space explosion causes
some modeling approaches to become intractable.
While the dynamics of any individual Ca2+ release site can theoretically be obtained by

Monte Carlo simulation regardless of model complexity, in practice these simulations are
prohibitively computationally intensive due to the large state spaces. Moreover, because
cells usually possess a large number of release sites, compositionally defined Ca2+ release
sitemodels have often been excluded frommultiscale whole cell simulations. On the other
hand, many recently developed approaches that accelerate whole cell simulations, such as
probability density and moment closure approaches [19, 20], require release site models
to be as compact as possible while retaining the physiological realism of collective channel
gating.
For these reasons, we developed several automated approaches based on fast/slow anal-

ysis [21]. To reduce Markov chain Ca2+ release site models where the rate constants in
release site models are categorized as either fast or slow, groups of states that are con-
nected by fast transitions are lumped so that the full model is compressed into a tractable
size while the physiological gating and interaction properties of the channels are pre-
served. However, when the time scale separation between transition rates that is necessary
for fast/slow analysis is absent, the manner in which the full model states should be par-
titioned and aggregated for optimal reduction is difficult to determine a priori. Naively
enumerating all partitions for a Markov chain Ca2+ release site model and choosing the
one with the smallest error is not possible because the number of valid partitions is too
large. Actually, finding out howmanyways one can divide a graph that possesses n vertices
into k smaller components is know to be an NP-hard problem [22]. For example, a release
site model composed of merely five three-state Ca2+ channels (15 states) can be parti-
tioned in approximately 1010 distinct ways. In this paper we discuss the implementation
of a genetic algorithm that is able to automatically and rapidly select partition schemes
that reduce the corresponding Markov chain model to a tractable size while keeping the
reduction error in control.

Genetic algorithms

Developed in the 1970s by John Holland [23], genetic algorithms are widely used as com-
putational schemes to find exact or approximate solutions for optimization and search
problems. Genetic algorithms have been applied to various aspects of biological research,
such as the profiling of gene expression in bacteria [24, 25] and phylogenetic analysis
of proteins [26]. More recently, it has been used to identify parameters for cell-specific
electrophysiology models [27]. Nevertheless, the application of genetic algorithms in the
context of the automated reduction of Ca2+ release site models is novel. In our imple-
mentation, each individual in a population corresponds to a potential scheme for state
aggregation. The program “evolves” the population by selecting the partitions that lead to
reduced models that approximate the full model behavior.
Unlike the fast/slow analysis that assumes fixed ER/SR [Ca2+] and instantaneous cou-

pling between the channels [21], we motivate a whole cell homeostasis formulation that
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takes both local and global Ca2+ signaling into consideration. Consequently the reduced
models selected by the genetic algorithm must generate small errors for a wide range of
ER/SR [Ca2+]. In the implementation of the genetic algorithm, a population of set parti-
tions is randomly generated, where each partition corresponds to a potential scheme for
state aggregation. The states of the full model is aggregated and reduced following each
individual set partition scheme. Then the difference between the full model and the cor-
responding reduced model on the behaviors of interest, spark statistics for example, are
measured and called the “error” of the reduced model. The error is used as the key fac-
tor for deciding the fitness of each individual partition scheme. Since partition schemes
that produce low errors are preferred, the fitness is chosen to be a decreasing function
of error. The program selects survivors from the current population in a manner that
favors better fitness (i.e. low error), then each survivor will generate one child (a new set
partition scheme) by mutation. The set partition population thus evolves toward the par-
titions that have better fitness and lead to reduced models that better approximate the
full model.
The remainder of this paper is organized as follows. In the ‘Model’ section we motivate

the network reduction process by partitioning a minimal whole cell model of Ca2+ home-
ostasis where both localized (subcellular) and global (cellular) aspects of Ca2+ signaling
are modeled. In the ‘Methods’ section we introduce genetic algorithms and detail their
implementation in the context of reducing a minimal whole cell model of Ca2+ homeosta-
sis that features bidirectional local and global Ca2+ signaling. In the ‘Results’ section, we
demonstrate that the reduced model approximates the full model with regard to several
important steady-state responses observed in the minimal whole cell environment. To
show that the reduction technique is applicable to more realistic Ca2+ release site mod-
els, we also present Ca2+ release site reduction results using a single channel model that
includes both cytosolic and luminal Ca2+ regulation.

Fig. 1 Diagram of model components and fluxes. The bulk endoplasmic/sarcoplasmic reticulum [Ca2+] is
represented by cer/sr , the bulk cytosolic and external [Ca2+] is ccyt and cext respectively. Ca2+ channels are
located on the ER/SR membrane forming release sites. The domain [Ca2+] (cdcyt and cder/sr ) are rapidly
changed by the release currents (Jrel) when the number of open channels changes. Other fluxes considered
in this model are: diffusion from cytosolic domain to the bulk cytosol (Jcyt ), diffusion from the bulk ER/SR to
the luminal side domains (Jer/sr ), a passive leak from the ER/SR to the cytosol (Jleak), the SERCA pump flux that
re-sequesters Ca2+ in to the ER/SR (Jpump) and fluxes across the plasma membrane (Jpm)
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Model
Aminimal whole cell model

We will demonstrate and validate our Ca2+ release site model reduction approach using a
whole cell model of a quiescent cytosolic environment that takes Ca2+ homeostasis into
account (Fig. 1). Similar to previous work by Hartman and colleagues [28], this minimal
whole cell model considers both local and global Ca2+ responses to the stochastic gating
of Ca2+ channels. Further, release and reuptake fluxes are balanced in this model. Figure 1
shows the components and fluxes of the model. A large number of Ca2+ release sites are
coupled to the bulk cytosolic and ER/SR [Ca2+]. Each Ca2+ release site is composed of
10–30 Ca2+ channels. In this formulation, release sites may experience different “domain”
[Ca2+], but all channels in a given release site experience the same local cytosolic and
luminal [Ca2+]. Consistent with prior work by Hinch and colleagues [29–31], when the
number of open channels in a Ca2+ release site changes, the local [Ca2+] is assumed to
rapidly reach a new equilibrium in the spatially restricted domain. The change in the bal-
ance of the leak and reuptake by the endo(sarco)plasmic reticulumCa2+-ATPase (SERCA)
pumps caused by this change in the domain [Ca2+] will influence the bulk [Ca2+] and
further affect the puff/spark dynamics.

Steady-state of domain concentration

Figure 1 demonstrates the fluxes in this whole cell formulation. The domain [Ca2+] for
the release sites, cdcyt and cder/sr , are coupled to each other via the release flux Jrel when
one or more channels open. As mentioned above, the domain [Ca2+] associated with each
release site is distinct, and all domains are coupled to the bulk cytosolic and luminal com-
partments via the fluxes Jcyt and Jer/sr . Under these assumptions, the domain fluxes are
given by:

Jnrel = νrelγn
(
cd,ner/sr − cd,ncyt

)
(1)

Jncyt = νcyt
(
cd,ncyt − ccyt

)
(2)

Jner/sr = νer/sr
(
cer/sr − cd,ner/sr

)
(3)

where νrel is the maximum release rate through a release site, ccyt and cer/sr are the
bulk cytosolic and ER/SR concentrations, and γn = n/N is the fraction of open chan-
nels at an N-channel per release site. The rate constants νcyt and νer/sr determine the
time required for the decay and refilling of the cytosolic and luminal microdomains,
respectively [32, 33].
Because the dynamics of domain Ca2+ is fast compared to the stochastic gating of Ca2+

channels, the domain fluxes associated with each release site must balance for any specific
release site:

Jnrel = Jncyt = Jner/sr . (4)

The domain [Ca2+] of any release site with n channels open can be obtained by directly
solving Eq. 4 as a function of the bulk cytosolic and luminal [Ca2+] (ccyt and cer/sr), that is,

cd,ncyt = νcyt
νcyt + ν̃er/sr

ccyt + ν̃er/sr
νcyt + ν̃er/sr

cer/sr (5)

cd,ner/sr = ν̃cyt
ν̃cyt + νer/sr

ccyt + νer/sr
ν̃cyt + νer/sr

cer/sr (6)
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where

ν̃cyt = γnνrelνcyt
γnνrel + νcyt

, and ν̃er/sr = γnνrelνer/sr
γnνrel + νer/sr

. (7)

Notice that for a release site withN channels, the number of open channels takes integer
values from 0 to N. Consequently, there are N + 1 pairs of cytosolic and luminal domain
[Ca2+] values for any given value of the bulk concentration (ccyt and cer/sr).

Concentration balance equations for the bulk cytosol and ER

As shown in Fig. 1, the bulk cytosolic and luminal [Ca2+] are both influenced by the Ca2+

fluxes to and from their associated microdomains, Jncyt and Jner . The bulk concentrations
also interact via a SERCA pump flux that takes the form:

Jpump = νpumpc2cyt
ν2pump + c2cyt

(8)

and a passive leak from the ER/SR to the cytosol of the form,

Jleak = νleak(cer/sr − ccyt). (9)

Following previous work [28] by Hartman and colleagues, our model formulation
assumes a permeabilized cell, and the plasma membrane flux Jpm is

Jpm = kpm(cext − ccyt) (10)

where kpm is chosen large enough so that the bulk cytosolic [Ca2+] is “clamped” to the
extracellular bath (cext = 0.1μ M).
Now that all Ca2+ fluxes are defined, the concentration balance equations for the bulk

cytosolic and ER compartments are given by:

dccyt
dt

= JTcyt + Jleak − Jpump + Jpm (11)

dcer/sr
dt

= 1
λer/sr

(
JTer/sr − Jleak + Jpump

)
, (12)

where λer/sr = Ver/sr/Vcyt , Vcyt and Ver/sr are the effective cytosolic and ER/SR volumes,
i.e. taking Ca2+ buffering into account. JTcyt and JTer/sr are the sums of fluxes over all release
sites. Notice that under the fast domain Ca2+ assumption, there are only N + 1 pairs of
possible domain [Ca2+] values and consequently JTcyt and JTer/sr can be expressed as

JTcyt =
N∑

n=0
fnvTcyt

(
cd,ncyt − ccyt

)
(13)

JTer/sr =
N∑

n=0
fnvTer/sr

(
cer/sr − cd, ner/sr

)
, (14)

where fn is the fraction of release sites with n open channels.

The Markov chain model of single channel gating

The stochastic gating of single channels is studied by a continuous-time discrete-state
Markov chain model. This single channel model has three states, C(closed), O(open)
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and R(refractory), featuring both Ca2+ activation and Ca2+ inactivation. The transition
diagram of this model is given by

k+
a

(
cdcyt

)η

k+
b

(
cdcyt

)η

C � O � R
k−
a k−

b

. (15)

In this transition diagram k+
i

(
cdcyt

)η

and k−
i , where i ∈ {a, b}, are transition rates with

units of reciprocal time. k+
i is an association rate constant with units of conc−η time−1

where η is the cooperativity of Ca2+ binding, and cdcyt is the domain [Ca2+] experienced by
the release site on the cytosol side. Under the assumption that the formation and collapse
of local Ca2+ is fast compared to channel gating, when the local Ca2+ concentrations are
specified, the transition-state diagram Eq. 15 defines a continuous time Markov chain
with the corresponding infinitesimal generator matrix Q = (qij) given by:

Q =

⎡
⎢⎢⎣

� k+
a

(
cdcyt

)η

0

k−
a � k+

b

(
cdcyt

)η

0 k−
b �

⎤
⎥⎥⎦ (16)

The off-diagonal entries of the Q-matrix for this irreducible and time-homogeneous
Markov chain are transition rates, or hazards, from state i to state j, defined by

qij = lim
�t→0

1
�t

Pr[ S(t + �t) = j|S(t) = i] , (17)

where i �= j and the diamonds (�) on the diagonal entries are negative values leading to
row sums of zero.
All of the statistical properties of the Ca2+ channel can be calculated from its Q-matrix

(Eq. 16). Importantly, the time evolution of the probability distribution over all three
states of this model can be calculated by solving the ordinary differential equation (ODE)
system:

dπ

dt
= πQ, (18)

where π(t) = (πC ,πO,πR) is a row vector indicating the probability of finding the channel
in each state at time t, given the initial condition π(0). Notice that the limiting probability
distribution π s ofMarkov chains (the steady state of Eq. 18) does not depend on the initial
condition π(0), and can be obtained by solving

π sQ = 0 subject to π se = 1, (19)

where e is a commensurate column vector of ones.

Compositionally defined Ca2+ release site models

The Ca2+ release site models that are used to demonstrate the implementation of the
reduction approach involve N identical Ca2+ channels interacting via changes in local
[Ca2+] under the assumption of “instantaneous mean-field coupling”. The local [Ca2+]
experienced by the Ca2+ regulatory site of each channel is assumed to depend only on the
number of open channels at the Ca2+ release site NO. Because identical channels coupled
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in this manner are indistinguishable, a release site composed of NM-state channels
includes

β(N ,M) =
(
N + M − 1

N

)
= (N + M − 1)!

N ! (M − 1)!
(20)

distinct states. In this three-state single channel model case, the N-channel release site
has β(N , 3) = (N+2)(N+1)/2 states. Each state can be written in the form of an ordered
three-tuple (NC ,NO,NR), where Ni = k, (i ∈ {C,O,R}) indicates k channels are in state
i, and

∑
i Ni = N . With this notation, the states of any release site form a well ordered

set and can be conveniently ranked anti-lexicographically. Figure 2 enumerates all the
states and illustrates the topology of the three-state single channel model (Fig. 2a) and a
minimal release site composed of two three-state channels under the mean-field coupling
assumption (Fig. 2b).

Methods
Reduction technique

Our basic strategy of reducing a Ca2+ release site model to a smaller model with pre-
determined size b̂ includes three major steps:

Step 1 Partition the full model into b̂ groups.
Step 2 Lump the states within each group.
Step 3 Calculate proper transition rates between groups.

In previous work [21], Step 1 was achieved automatically based on the separation of
time scales, where states that are connected by fast transitions were aggregated. In this
paper, we employ a genetic algorithm to search for partition schemes that generate small
reduction errors for general Ca2+ release site models, especially those without time scale
difference. In the future, a partition that divides the states of a release site model into b̂
groups will be referred to as a “b̂ -partition”. Step 2 and Step 3 in this reduction technique
are carried on from [21].

a b

Fig. 2 State space of a three-state single channel model and a minimal release site model. a The tuple
representation of the three-state single channel model in Eq. 15. States C,O, R are represented by (100), (010),
(001) respectively. b The topology and connectivity of a release site composed of two three-state channels
in the tuple representation. The 6 states CC, CO, CR,OO,OR, RR are represented by (200), (110), (101), (020),
(011), (002) respectively. The ranks of the states are labeled in circles. Dashed line boxes and grey boxes
represent two sample three-partitions of the two-channel release site I1 and I2 in the main text
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Theoretically, this genetic algorithm-based technique can be used to reduce any Ca2+

release site models of size β(N ,M) to any pre-determined size b̂ (b̂ < β(N ,M)). Further-
more, the partition scheme can be restricted by certain rules, such as “each group must
be connected on the transition diagram” or “all states in each group must present the
same number of open channels”, etc. Hereafter, we will demonstrate the implementation
of the genetic algorithm using a minimal example where the 6-state release site model
illustrated in Fig. 2b is partitioned into 3 groups with the constraint “states in each group
must be connected”. Results from reducing a release site that is composed of 10 three-
state channels will be presented in the ‘Results’ section. Other partition restrictions can
be implemented by restricting the reproduction procedure or modifying the objective
function.

Genetic algorithms

Genetic algorithms are probabilistic search algorithms that were introduced by John
Holland in the 1970s [23]. Based on themechanics of natural selection, genetic algorithms
have been used to find exact or approximate solutions to optimization and search prob-
lems whose objective functions are discontinuous, nonlinear, difficult to calculate, etc.
[34, 35]. These algorithms manipulate a population of solutions to the objective function
and implement a “survival of the fittest” strategy in their search for better solutions. In
general the methodology of genetic algorithm s can be displayed in a flowchart as shown
in Fig. 3.
The program starts with initialization, where a number of “individuals” (solution

candidates) are randomly generated to form an initial “population”. The size Np of the
population is usually kept constant throughout the entire searching procedure. After
initialization, this population goes through the evaluation procedure, where each indi-
vidual is evaluated by the objective function and its fitness is assigned according to the
objective function value. The program then checks whether the termination criteria are
satisfied; usually either the desired objective function value is attained or a predetermined
number of generations is reached. If none of the termination criteria is satisfied, the pro-
gram will move on to the selection process, which is usually stochastic and designed so
that the individuals with better fitness have a higher probability to be selected as com-
pared to those who are less fit. Only a fraction of the current population (Ns individuals,
whereNs < Np) can survive and enter the reproduction process as the “parent” solutions.
To generate each “child” (a new solution candidate), one or more parents are selected,
recombined (crossover) and/or varied (mutate). The reproduction process continues till
Np individuals are generated and thus a new generation of population is formed. The new
generation will then go through an evaluation process to have its fitness evaluated and
the entire program continues until one or more of the termination criteria are satisfied.

Fig. 3 A simplified flow chart of the general procedures of genetic algorithms. The program starts with the
Initialization subroutine then loops through Evaluation, Selection and Reproduction till the stop criteria is met
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Initialization

Our purpose in using genetic algorithm s is to find partition schemes of full Ca2+ release
site models so that the resulting reduced models better approximate the full models. In
this context, each individual (Ii) is a set partition scheme which divides the β(N ,M)

states of the full model into b̂ groups. To make physical sense, the requirement of the
partition process is that each group must be internally connected, that is, there is a
path from any state to any other state. The dashed line boxes and grey boxes in Fig. 2
give two samples valid three-partitions that divide the 6-state release site model into
3 groups:

I1 = ({1, 2}, {3, 5, 6}, {4})
I2 = ({1}, {2}, {3, 4, 5, 6}).

In the initialization process, Np distinct three-partitions are randomly generated.

Evaluation

In the evaluation process each of theNp individuals (partition schemes) must be applied
to the full model and have its corresponding reduced model compared to the full model.
The fitness of each individual is then assigned in a manner that favors those that produce
less error.
We demonstrate this procedure inmore detail with the following individual cited above:

I1 = ({1, 2}, {3, 5, 6}, {4}).

Firstly, the generator matrix associated with the two-channel release site model Q is
permuted to reflect the order of I . The permutation for I1 is shown in Fig. 4a. The new
generatormatrix Q̃ is then partitioned into a b̂×b̂ blockmatrix (b̂= 3 for I1) following the
scheme given by I (Fig. 4b). π̃ , the stationary distribution of Q̃ is conformally partitioned
as

π̃ = [
π̃1, π̃2, . . . , π̃ b̂

]
. (21)

a b c

Fig. 4 Permutation of states and partition structure for two three-state channels following partition scheme
I1 = ({1, 2}, {3, 5, 6}, {4}). a The rows and columns of the expanded generator matrix Q are both permuted
following the order given by partition scheme I1. b The block structure given by the thicker lines shows the
the partitioning of the generator matrix following I1. c The corresponding reduced matrix calculated from
Eq. 23
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The generator matrix Q̂ of the target reduced Ca2+ release site model is a b̂ × b̂matrix

Q̂ =

⎡
⎢⎢⎢⎢⎣

q̂11 q̂12 ... q̂1b̂
q̂21 q̂22 ... q̂2b̂
...

...
. . .

...
q̂b̂1 q̂b̂2 ... q̂b̂b̂

⎤
⎥⎥⎥⎥⎦ , (22)

where

q̂ij = π̄ iQ̃ijej (23)

for i �= j, and q̂ii = ∑
j �=i −q̂ij. π̄ i is the conditional probability distribution of the states

within group i:

π̄ i = π̃ i
π̃ iei

(24)

and ei are the commensurate column vectors of ones.
When the reduced matrix is generated, the transition probability matrix (jump matrix)

of the corresponding reduced model (P̂ = etQ̂) is compared to the transition probability
matrix of the full model (P = etQ). Assuming the full model has b states, we write

Ê(t) = P̂(t) − UP(t)V (25)

where V is a b × b̂ collector matrix [36],

V =

⎡
⎢⎢⎢⎢⎣

e1 0 · · · 0
0 e2 · · · 0
...

...
. . .

...
0 0 · · · eb̂

⎤
⎥⎥⎥⎥⎦ ,

the ei are column vectors of ones with lengths commensurate with Qii, and U is a b̂ × b
distributor matrix given by

U =

⎡
⎢⎢⎢⎢⎣

π̄1 0 · · · 0
0 π̄2 · · · 0
...

...
. . .

...
0 0 · · · π̄ b̂

⎤
⎥⎥⎥⎥⎦ . (26)

Notice that, similar to Eqs. 23 and 24, the conditional probability distribution π̄ i of
the states within group i, is calculated from the stationary distribution of the full model.
The transition probabilities of the reduced model and the full model agree with each
other exactly in the limit. As shown in Fig. 5a, the maximum difference of the transition
probabilities falls below 10−9 within 1 second.
Ê(t) is a b×bmatrix and is cumbersome to use for evaluation. Consequently, we define

Emax(t) = max
ij

∣∣∣Êij(t)
∣∣∣, the element of Ê(t) with largest absolute value at time t. Note

that Emax is a function of both time and cer/sr because the transition rates of the full Ca2+

release site model are functions of the luminal [Ca2+]. Figure 5a shows Emax(t; cer/sr) for
the 6-state Ca2+ release site model (Fig. 2b) reduced to a three-state model following the
partition scheme given by I1. As validated in [21], the reducedmodel better approximates
the full model as Emax gets smaller. The maximum transition error decreased significantly
as the luminal [Ca2+] is dropped from 1100 μM (dashed line) to 100 μM (dot-dash-dot
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a b

Fig. 5 Error measure. a The maximum (Emax ) of the transition probability matrix Ê(t) as a function of time
from the reduction of 2 three state Ca2+ channels (Eq. 15) following the partition scheme I1 when the
ER/SR [Ca2+] (cer/sr ) is 100 μM (dot-dashed line), 600 μM (solid line), and 1100 μM (dashed line). Parameters:
k+a = 4.5 μM−η ms−1, k+b = 0.2 μM−η ms−1, k−a = k−b = 500ms−1, ccyt = 0.1 μM, η = 2. Cytosolic
side domain [Ca2+] is calculated from Eq. 5. b The integrated reduction error E as a function of cer/sr
(100 − 2000 μM). The reduction errors associated with partition scheme I1 and I2 are shown by the dashed
and solid line, respectively. The star and dot indicate the maximum values

line), indicating reductions following partition scheme I1 make better approximations of
the full model at relatively low levels of luminal [Ca2+].
In order to have the reduced model applicable in the whole cell simulation described

previously, the objective we want to achieve through the genetic algorithm is to pick parti-
tions that produce small reduction errors for all possible ER/SR [Ca2+] values at all times.
Consequently, we define

E(cer/sr) =
∫

Emax(t, cer/sr)dt, (27)

the area under each curve in Fig. 5a. Then, for any partition scheme I , the integrated
error E can be calculated as a function of cer/sr , and the maximum E(cer/sr) is selected
as the global reduction error of scheme I . In Fig. 5b the dashed and solid lines show the
integrated error E associated with I1 and I2, respectively, as a function of cer/sr (100 −
2000 μM).
Because partitions that result in lower reduction errors are preferred, the fitness of a

given partition scheme F is defined by

FI = 1
maxcer/sr EI(cer/sr)

. (28)

As shown in Fig. 5b, when the full model is partitioned and lumped following I1 (dashed
line), the maximum possible error (star) generated by the reduced model E1 is approxi-
mately 210 times larger than the maximum error (dot) generated by using I2. The fitness
of I1 is consequently 210 times less than the fitness of I2.

Selection and reproduction

This section introduces how the genetic algorithm implementation forms the “next gen-
eration” from the current population. The conventional reproduction process in genetic
algorithms usually consists of selection, crossover andmutation.
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We start with building a discrete probability distribution that is used to select par-
ents of the next generation of set partitions. The probability mass function (PMF), which
indicates the probability Pi for each “individual” Ii to be selected, is

Pi = Fi∑
i
Fi

(1 ≤ i ≤ Np), (29)

that is, the probabilities of selection are proportional to the fitness, Fi. To generate each
child, we start by randomly selecting a pair of parents, one at a time, from the current
population following the corresponding PMF. For example, the probability of I1 being
selected is 210 times smaller than the probability that I2 is selected.
After a pair of parents are selected, a child is generated through the crossover process,

which takes the permutation of states from one parent and the group sizes from the other
parent. For example, if the permutation of states is taken from I2 ({1}, {2}, {3, 4, 5, 6}) and
the group sizes are taken from I1 ({1, 2}, {3, 5, 6}, {4}) then the child would be

({1, 2}, {3, 4, 5}, {6}).
After a child is produced, with probability p, a mutation process begins by randomly

selecting and joining two groups of states in its partition scheme, and then randomly
splitting this aggregated group of states into two new internally connected groups. For
example, a possible mutation process of the child could be joining the second and third
group:

({1, 2}, {3, 4, 5, 6}),
then randomly split the aggregated group in to two new connected groups and a valid
mutation is:

({1, 2}, {3}, {4, 5, 6}).
In our implementation of the genetic algorithm, a child may undergo multiple muta-

tions of this kind. A geometric distribution is assigned to the number of mutations nm for
each child:

Pr(nm = k) = (1 − p)k−1p, (30)

where k = 1, 2, 3, . . . and p = 0.8.
Note that the reproduction process generates one child at a time and continues until the

number of children reachesNp. These children then forms a new generation of individuals
and are sent to the evaluation process, starting a new iteration in the genetic algorithm.
The genetic algorithm is executed until either a set partition has a fitness F ≥ 1000
(reduction error E less than 0.1% for all luminal [Ca2+] values) is found, or the maximum
number of allowed iterations (2000) is reached.

Results
In this section we first validate the genetic algorithm implemented in the previous section
by showing that the algorithm converges and produces set partition schemes that gener-
ate small reduction errors. To demonstrate that the genetic algorithm can be applied to
general Ca2+ channels, we use this approach to reduce a release site that is composed of
several four-state channels (Fig. 7) under the constraint that each group of states must
be connected in the state transition diagram. This four-state model features activation by
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cytosolic Ca2+ and luminal [Ca2+] regulation of the activation affinity. The reduced Ca2+

release site model is integrated into the whole cell model, and simulation results from the
reduced and the full model are compared.

Reducing Ca2+ release site models that are composed of three-state channels

Figure 6 shows an example of the convergence of the genetic algorithm. We applied the
genetic algorithm to reduce a Ca2+ release site model that is composed of 10 three-state
channels (66 states) to an 11-state model. The population size Np = 10 and the reduction
error E was measured for 50 log-spaced cer/sr values ranging from 100 μM to 2000μM.
Each column of stars represents the 10 individuals of a generation. The black stars indi-
cate the individual (partition) that produces the smallest error in its generation. The
criterion that ends the program is defined as E < 10−3 or 2000 generations are gener-
ated, whichever is satisfied first. In this specific reduction experiment, the program did
generate 2000 generations and the minimum E was 0.0043.

Reducing Ca2+ release site models that are composed of four-state channels with luminal

regulation

Here we demonstrate that reduced Ca2+ release models can replace the full model in the
whole cell Ca2+ homeostasis model with good accuracy. To validate that the reduction
procedure fits a wide variety of models, we introduce a four-state model (Fig. 7) which is
activated by cytosolic Ca2+ and the activation affinity is regulated by the luminal [Ca2+].
The four-state Ca2+ channel model is assumed to have a regular or “unsensitized”

mode (states Cu,Ou) in which the activation dissociation constant (Ka =
√
k−
a /k+

a ) is
higher than the activation dissociation constant (Kd =

√
k−
d /k+

d ) of the “sensitized” mode
(Cs,Os). We also assume that the channel is more likely to be in the “sensitized” mode
when the ER/SR [Ca2+] is high. k+

i

(
cdcyt

)2
, k+

j c
d
er/sr and k

−
i , for i, j ∈ {a, ..., e}, are transition

rates with units of reciprocal time. k+
i is an association rate constant with units of conc−η

time−1, where η is the cooperativity of Ca2+ binding while cdcyt and cder/sr are the domain
[Ca2+] experienced by the release site on the cytosol and ER/SR side respectively. Notice
that we assume that the Ca2+ binding cooperativity (η = 1) of the channel sensitization
(luminal regulation) process is different from the binding cooperativity of the activation
process (η = 2).

Fig. 6 A sample evolution record from the genetic algorithm. A Ca2+ release site composed of 10 three-state
channels is designated to be reduced to a 11-state model. One of every 10 generations is plotted. Each
column of stars indicates a generation of 10 individuals and the one that produces the least error is indicated
by the black star. Parameters are as Fig. 5
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Fig. 7 Transition diagram of the four-state Ca2+ channel model. The channel is activated by cytosolic Ca2+

(transitions Cu → Ou and Cs → Os) and is “sensitized” by ER/SR Ca2+ (transitions Cu → Cs and Ou → Os).
Parameters: k+a = k+d = 4.5 μM−2ms−1, k+c = k+e = 1 μM−1ms−1, k−a = k−d = 500ms−1, ccyt = 0.1 μM

An important motivation in using this four-state model is that luminal regulation of
RyRs is observed inmany experiments [37, 38] but the detailedmechanism is yet not clear.
In this paper, we are interested in how the “sensitization” of the activation of each indi-
vidual Ca2+ channel affects the cooperative gating of the Ca2+ release site. Consequently
we experiment on different sensitized activation rates as well as the dissociation constant
Kc = k−

c /k+
c (Fig. 7) of the sensitization process. On the other hand, the parameters of the

regular or “unsensitized” Ca2+ activation were chosen to be consistent with the param-
eters in [28], where many puff/spark statistics of a group of 10 two-state Ca2+-activated
channels were studied.
The number of Ca2+ release sites is assumed to be large so that the distribution of

release site states can be well approximated by π(t) (solved from Eq. 18) instead of
using Monte Carlo simulation. However, simply substituting πn for fn in Eqs. 13 and 14
will fail because the “fast domain” assumption is a singular limit of the ODE system.
Consequently, instead of using Eqs. 11 and 12 we consider the total cytosolic (ĉcyt) and
ER/SR [Ca2+] (ĉer/sr), which are sums of the bulk and domain concentrations weighted by
effective volume ratios,

ĉcyt = ccyt + 	d
cyt c̄

d
cyt (31)

ĉer/sr = cer/sr + 	d
sr

λsr
c̄ der/sr . (32)

where c̄ dcyt and c̄ der/sr are the given by

c̄ dcyt =
N∑

n=0
πncd, ncyt (33)

c̄ der/sr =
N∑

n=0
πncd, ner/sr , (34)
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which are the mean values of the cytosolic and SR domain Ca2+ concentrations. The
effective volume ratios in Eqs. 31 and 32 are given by

	d
cyt = Vd,T

cyt
Vcyt

(35)

	d
sr = Vd,T

sr
Vcyt

, (36)

where Vd,T
cyt and Vd,T

sr are the effective volumes of the aggregated cytosolic and SR
domains, respectively. The equations that balance ĉcyt and [Ca2+] ĉer/sr are given by:

dĉcyt
t

= JTrel + Jleak − Jpump + Jpm (37)

dĉer/sr
t

= 1
λer/sr

(
−JTrel − Jleak + Jpump

)
. (38)

The total release flux JTrel is given by

JTrel =
N∑

n=0
πnγnvTrel

(
cd, ner/sr − cd, ncyt

)
, (39)

where γn = n/N , cd, ncyt and cd, ner/sr are given by Eqs. 5, 6 and 7, and πn is the probability
that a randomly sampled release site has n open channels, which can be found from π =
(π0,π1, · · · ,πN ) by integrating Eq. 18.
Figure 8 shows a comparison of 20 numerical calculations of the stationary dynamics of

a Ca2+ release site composed of 10 four-state RyRs (286 states, lines) and the correspond-
ing reduced 34 statemodel (circles and crosses) using different values of the disassociation
rate of sensitization KC . The filled circles and triangles show the results of a release site
composed of 10 two-state RyRs. When the disassociation rate of sensitization KC is high
enough, the sensitized states are rarely visited and consequently the four-state model
results should approach the two-state model results. As shown in Fig. 8 the four-state
model well approximates the two-state model when KC is approximately 1000 μM.
In Fig. 8, panel a shows that decreasing the KC will decrease the bulk SR [Ca2+] and the

results calculated from the reduced Ca2+ release site model is a close approximation to
the full model. Figure 8b shows the open probability of a single four-state channel (dashed
line) as a function of KC . The solid line in Fig. 8b shows the fraction of open channels, fO
of the 10-channel release site, where

fO = E [NO] /N , (40)

and

E [NO] =
N∑

n=0
nπn (41)

is the average number of open channels per release site. The reduced model gives a
good approximation for both parameters of the full model (empty circles and crosses).
As KC decreases, both parameters increase, which indicates adding the sensitized states
increases the open probability of the channels. The increased open probability further
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a b

c d

Fig. 8 Effects of luminal regulation calculated from release sites composed of 10 luminal regulated Ca2+

channels. Results from the full release site model and reduced model are shown by lines and empty circles
(and crosses in B), respectively. The filled circles show corresponding results from the release site composed
of 10 two-state Ca2+ activated channels without luminal regulation. a steady state ER/SR [Ca2+] as a function
of KC . b steady state open probability (dashed line) and the fraction of open channels (solid line) as a function
of KC . c spark scores as a function of KC . d spark durations as a function of KC

causes a lower steady state SR [Ca2+], which is consistent with Fig. 8a. In prior work by
Nguyen and colleagues [6], a puff/spark Score was defined as

Score = Var
[
fO

]
E

[
fO

] = 1
N

Var [NO]
E [NO]

(42)

from which the presence or absence of puff/spark can be assessed. This measure ranges
between 0 and 1, and values that are larger than 0.2 indicate the presence of robust Ca2+

puffs/sparks. Figure 8c, shows the Scores of the full model and the reduced model as a
function of KC . The reduced model Scores give a close approximation to the full model
results.
Notice that the Score values are above 0.35 for all KC values, indicating robust Ca2+

puffs/sparks present in both the full and reduced model. We further studied the mean
duration of spontaneous Ca2+ puffs/sparks occurring as a function of KC in the whole
cell formulation, shown in Fig. 8d. We assume that a transition from NO = 4 to NO = 5
is considered to initialize a puff/spark and a transition from NO = 1 to NO = 0 (all
channels closed) terminates the puffs/spark. The mean puffs/spark duration was calcu-
lated using the matrix analytic method described in [39]. As KC decreases, the channels
are more likely to be sensitized, the puff/spark duration increases, indicating that the
luminal regulation of the channel might lead to longer puffs/sparks, which is consis-
tant with experimental observations [38, 40]. Compared to the Ca2+ release site model
composed of 10 two-state channels (filled circle), the average puff/spark duration of a
release site composed of the same number of four-state channels can be up to four times
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(when KC = 1 ) longer. While in prior work [21], similar comparisons to a Ca2+ release
site composed of Keizer-Levine model [41] and its corresponding reduced model gave
good agreement, in this new study the reduced model tends to slightly underestimate the
puff/spark durations.

Conclusions and discussion
A brief summary

We have implemented and validated a novel genetic algorithm-based searching technique
to find reduced models that produce moderate errors for Ca2+ release site models that are
compositionally defined from single channel Markov models. Given a full model and the
designated size of the reduced model, this algorithm samples and evolves a population of
set partitions, each corresponding to a potential scheme for state aggregation, that leads
to the partitions that lead to reduced models which approximate the full model on the
behaviors of interest. A Ca2+ release site composed of 10 four-state channels that are
activated by the cytosolic Ca2+ and regulated by luminal Ca2+ is reduced by this technique
and the steady state responses of the reduced model well approximate the full model in
the minimal whole cell homeostasis environment (Fig. 8).
When a Ca2+ release site model is reduced, the resulting models are designated to have

significantly fewer states, which is inevitably accompanied by losing some transition infor-
mation. Different state aggregation schemes may preserve different information. A main
benefit from using genetic algorithms is that the evaluation function is flexible enough
to pick state aggregation schemes that maximize any information that is of specific inter-
est to the user. In this report, for example, we are interested in how luminal regulation
affects the spark behavior of the Ca2+ release site, and the evaluation function is con-
sequently designed to assign higher fitness to the partitions which generate small errors
in a wide range of ER/SR [Ca2+]. As another example, if the spark frequency is crucial in
some study, we can conveniently edit the evaluation function to calculate the spark fre-
quency of each reduced model generated from partition I and assign higher fitness to the
ones that better approximate the full model spark frequency. When focusing on a single
release site, behaviors of interest that could be implemented include, but not limited to:
the number of open channels, transition probabilities among specific states, puff/spark
amplitude, puff/spark durations, and inter-puff/spark-intervals. When considering Ca2+

diffusion and homeostasis, hybrid stochastic and deterministic simulations as used by
Rückl and colleagues [42, 43] can be implemented in the evaluation function such that
reduced models approximate the [Ca2+] wave and oscillation statistics of the full model.

Comparison to previous work

As compared to the fast/slow reduction technique [21], the genetic algorithm-based
approach does not require time scale differences and allows users to choose the size of
the reduced model freely. More importantly, the genetic algorithm-based approach often
finds partition schemes that produce less error than the fast/slow technique. It is also
important to note that this procedure performs better on models whose parameters are
of the same scale. When time scale differences are present, like in the Keizer-Levine
model and the De Young-Keizer model, because for every Individual I , we must reduce
the full model following the aggregation scheme, calculating the reduction error by com-
puting matrix exponentials. Thus, it is recommended to fine tune the genetic algorithm
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parameters to achieve faster convergence. The choice of crossover and/or mutation prob-
abilities, selection techniques, and even population size per generation could affect the
performance of genetic algorithms [44]. For example, when reducing a full model consist-
ing of 10 four-state channels, if using 10 as the population size and 2000 generations are
generated until the program terminates, the total time consumed is approximately 2000
times that of the fast/slow procedure. If the population size was increased to 200 individu-
als per generation, the genetic algorithm can find equally good reductions approximately
10 times faster. Fortunately, for any specific objective assigned, the reduction procedures
need to execute very few times and the reduced release site models are potentially able
to save significantly more time in the whole cell simulations. Furthermore, this genetic
algorithm-based reduction technique can be hybridized with other stochastic optimiza-
tion methods. For example, we implemented one version of the genetic algorithm with a
simulated annealing twist, where the crossover procedure was skipped and every indi-
vidual that survived selection would generate a child through mutation. This version
converges faster as compared to the traditional genetic algorithm when applied to some
release site models.

Future work

As discussed in the ‘Background’ section, how to control computational cost of large
mathematical/computational models has become an increasingly important research
topic. The recent work by Cao and colleagues [45] that proposed a deterministic model
of IP3Rs that qualitatively predicts some stochastic Ca2+ oscillation properties is very
encouraging. This two-state model was constructed by reducing a 6-state stochastic IP3R
model [46], where the six states were partitioned into two groups assuming time scale
differences and the experimentally observed “two mode” property. Then each group was
lumped to a single state according to the steady state probability distribution of the full
model. Not only can this deterministic model quantitatively reproduce Ca2+ puffs and
stochastic oscillations, but their model is also approximately 10 times faster than the
comparable stochastic simulations. It would be very beneficial if we can find simple deter-
ministic models that can replace other stochastic calcium channel models under certain
circumstances. Since not all models possess time scale differences, we can potentially use
the genetic algorithm approach to search for partition schemes of stochastic IP3R or RyR
models that allow the reduced deterministic models to well approximate the stochastic
behaviors of these channels.
Another important project for the near future is to search for common features in the

partition schemes that produce small errors. Should the aggregated states in the reduc-
tion follow certain topological pattern or possess similar functional feature (having similar
number of open/refractory channels for example) the model reduction approach can be
significantly accelerated by using a biased initial population. So far, an interesting phe-
nomenon observed while reducing Ca2+ release site models using the genetic algorithm
based approach is that the state aggregation schemes which result in small reduction
errors tend to be “heavy headed”. That is, these low-error partitions usually feature one
large group that contains more than 50% of the states while other groups contain sig-
nificantly fewer (sometimes only one or two) states. Moreover, the states aggregated
in the small groups are highly likely to be the states that are less often visited in the
full model, and this phenomenon exists in all Ca2+ release site reduction procedures.
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This observation is a good explanation for the fact that the generator matrices associ-
ated with the reduced model Q̂ tend to be ill-conditioned. This observation suggests
that it may be possible to generate a biased initial population to accelerate the evolution
procedure.
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