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Abstract

Background: The description of intracellular processes based on chemical reaction
kinetics has become a standard approach in the last decades, and parameter
estimation poses several challenges. Sensitivity analysis is a powerful tool in model
development that can aid model calibration in various ways. Results can for example
be used to simplify the model by elimination or fixation of parameters that have a
negligible influence on relevant model outputs. However, models are usually subject to
rescaling and normalization to reference experiments, which changes the variance of
the output. Thus, the results of the sensitivity analysis may change depending on the
choice of these rescaling factors and reference experiments. Although it might
intuitively be clear, this fact has not been addressed in the literature so far.

Methods: In this study we investigate the effect of model rescaling and additional
normalization to a reference experiment on the outcome of two different sensitivity
analyses. Results are exemplified on a model for the MAPK pathway module in PC-12
cell lines. For this purpose we apply local sensitivity analysis and a global
variance-based method based on Sobol sensitivity coefficients, and compare the
results for differently scaled and normalized model versions.

Results: Results indicate that both sensitivity analyses are invariant under simple
rescaling of variables and parameters with constant factors, provided that sensitivity
coefficients are normalized and that the parameter space is appropriately chosen for
Sobol’s method. By contrast, normalization to a reference experiment that also
depends on parameters has a large impact on the results of any sensitivity analysis, and
in particular complicates the interpretation.

Conclusion: This work shows that, in order to perform sensitivity analysis, it is
necessary to take into account the dependency on parameters of the reference
condition when working with normalized model versions.

Keywords: Global sensitivity analysis, Sobol indices, Model rescaling, MAPK signaling
pathway
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Background
Ordinary differential equations are the most commonly used mathematical approach
to describe the dynamics of intracellular signaling pathways. They are often based on
chemical reaction kinetics, and standard ways to describe reaction rates exist. Several
models have been proposed for different signaling pathways, and analysis methods have
been developed and applied for further model investigation. Many of these models are
scaled and normalized to a predefined reference condition. Appropriate rescaling can
simplify the model and for example remove non-identifiable parameters (see e.g. [1]).
Normalization is often needed to compare models to any kind of normalized experimen-
tal data. A normalization of experimental data is generally required in all cases where
measured outcomes do not allow to extract absolute amounts, but only values that are
assumed to be proportional to these amounts. This is quite often the case, including for
example Western blot or FACS data. Western blotting is a technique to quantify pro-
tein amounts and their activity states. Detection works via the quantification of light
signals from antibodies that specifically bind to the protein under study. These light sig-
nals have to be normalized in a two-step procedure in order to enable a comparison
between different replicates. In a first step, signals are normalized to a loading con-
trol, in order to minimize artifacts that are due to different loading amounts. Second,
since raw signals depend on the specialties of the antibodies, the particular membranes
and chemicals in use, they are usually additionally normalized to a reference condi-
tion (for examples see [2, 3]). This second normalization is required for a comparison
of data from different replicates. Since Western blotting is also used more and more
frequently for a quantitative analysis, several studies are involved with the experimen-
tal protocols, testing of linear ranges, and proper normalization procedures [4, 5]. In
this work we use the term rescaling whenever model parameters and variables are mul-
tiplied by constant factors, which is often applied to obtain dimensionless models. In
contrast, normalization refers to conditioning data to a reference experiment, though
both terms are often used as synonyms in other references. From a modeling point of
view, rescaling and normalization must sometimes be treated differently, since the refer-
ence experiment usually also depends on parameters, and in particular, is itself subject to
variance.
Although normalized models are omnipresent all over, the effect of normalization on

model calibration and analysis has not been well-investigated so far, and is also poorly
understood. From a modeling point of view, the effect of normalization in a statisti-
cal framework for state estimation has been investigated [5–7]. Results indicate that
normalization might also have a crucial effect on parameter estimation.
Here we consider the effect of rescaling and normalization on sensitivity analysis.

Sensitivity analysis is one of the most important tools in model development and can
for example be used for model reduction, calibration, validation, robustness analysis
or the design of experiments. This type of model analysis is widely applicable in var-
ious scientific fields such as engineering, physics, economy, social sciences and many
more. Some nice examples from different applications are illustrated in [8]. Various
mathematical definitions of sensitivity functions exist, with different methods for their
computation. However, the common basic idea is to quantify the variation of an output
of a mathematical model due to variations of some input quantity, such as for exam-
ple a model parameter or an initial condition. In some cases, the output of interest is a
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time-invariant function of the input, for example the steady state of the system. When
considering dynamical systems, described for example with ODE models, the output of
interest is generally the whole trajectory of the state variable, rendering the analysis
more challenging. An introduction into sensitivity theory for continuous- and discrete-
time dynamical systems is provided in [9], with a particular focus on linear systems.
This book is mainly interesting for control engineering applications, since it defines
sensitivity functions in time and frequency domains, and investigates optimal control
systems. Zi et al. [10] and Kim et al. [11] instead provide good reviews about the appli-
cation of different sensitivity analysis methods in systems biology, including advices for
toolboxes and implementations and its role for model development. Further applica-
tion of global sensitivity methods on different biologically inspired example models are
described in [12] and [13], the former with a special focus on computational efficiency.
Kent et al. [13] define a sensitivity based robustness measure, which is evaluated on five
different models, including also a model for the steady states in the MAPK signaling
module.
In this study, we exemplarily investigate the impact of rescaling and normalization

to a reference experiment on sensitivity analysis for a toy model describing a sim-
ple reversible reaction to illustrate results and, as a real world case study, a model
of the MAPK signaling pathway module in PC-12 cell lines. For the latter we use a
model that was calibrated to Western blot data from an experimental study in San-
tos et al. [14]. Parameter estimation was done via a sampling-based Bayesian approach.
For this study we use the maximum-a-posteriori (MAP) estimator as a point estimate.
We compare results of local and global, variance-based sensitivity analysis methods on
three model versions. The native model version A describes the dynamics of activi-
ties of proteins that take part in the signaling cascade. In model B all variables are
rescaled to their respective total protein amounts, which are assumed to be conserved.
Thus variables represent fractions of total amounts. Finally, in order to compare this
model to Western blot data, the model output was additionally normalized to a refer-
ence condition, which defines model variant C. This last model version was the one
used in [15] for parameter estimation. We compare the results of local and global,
variance-based sensitivity analysis on these three model variants. We decided to use
the Sobol sensitivity analysis method [16, 17], since it is one of the most general meth-
ods that, different from other methods, does not rely on monotone or even linear
input/output relationships [10]. Moreover, Sobol sensitivity indices have been shown to
highly correlate with other sensitivity measures, such as indices from Extended Fourier
Amplitude Sensitivity Tests (FAST) and Partial Rank Correlation Coefficients (PRCC),
indicating a kind of robustness of these measures [18]. They are furthermore recently
pointed out as advantageous in other respects as well in connection with pharmacology
models [19].
The paper is structured as follows. We start deriving general results for the effect of

rescaling and normalization on local and global sensitivity analysis. These are compared
and discussed for all three model versions of the toy model, which partly allows to illus-
trate effects by analytic calculations. Then we introduce the ODE modeling approach
for the MAPK signaling pathway module and discuss numerically obtained results
for this case study. Details of the sensitivity methods can be found in the Methods
section.
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Results and discussion
The effect of rescaling and normalization on sensitivity analysis

Local sensitivity analysis

Local sensitivity analysis investigates the influence of a parameter p on a model output
yi(t, p) around a reference parameter set p∗. Sensitivity coefficients are formally defined
as first-order partial derivatives of the model output yi with respect to the parameter pj,

Sij(t) = ∂yi(t, p)
∂pj

∣∣∣∣
p=p∗

. (1)

In our analysis we consider the normalized sensitivity coefficients,

sij(t) = ∂ log(yi(t, p))
∂ log(pj)

∣∣∣∣
p=p∗

= ∂yi(t, p)
∂pj

pj
yi(t, p)

∣∣∣∣
p=p∗

= ∂yi(t, p)
∂pj

∣∣∣∣
p=p∗

p∗
j

yi(t, p∗)
. (2)

The coefficients sij(t) are invariant under rescaling of model parameters and variables.
This can easily be verified. We consider two models 1 and 2 that only differ in their scales.
For simplicity we consider model 1 to have a single output y(t, p) that depends on a single
parameter p. Both are rescaled in model version 2, i.e. p̃ = bp and ỹ(t, p̃) = ay(t, p). The
normalized sensitivity s̃(t) of model 2 about a reference parameter value p̃∗ = bp∗ reads

s̃(t) = ∂ ỹ(t, p̃)
∂ p̃

∣∣∣∣
p̃∗=bp∗

p̃∗

ỹ(t, p̃∗)
(3a)

= a∂y(t, p)
b∂p

∣∣∣∣
p=p∗

bp∗

ay(t, p∗)
(3b)

= ∂y(t, p)
∂p

∣∣∣∣
p=p∗

p∗

y(t, p∗)
(3c)

= s(t), (3d)

which equals the normalized sensitivity coefficient s(t) of model version 1.
Normalization of the model output to a (parameter dependent) reference experiment

at time t∗,

y′(t, p) = y(t, p)
y(t∗, p)

, (4)

leads to the following normalized sensitivities s′(t):

s′(t) = ∂y′(t, p)
∂p

∣∣∣∣
p∗

p∗

y′(t, p∗)
(5a)

= ∂

∂p
y(t, p)
y(t∗, p)

∣∣∣∣
p∗

p∗

y′(t, p∗)
(5b)

= ∂y(t, p)
∂p

∣∣∣∣
p∗

p∗

y(t, p∗)
− ∂y(t∗, p)

∂p

∣∣∣∣
p∗

p∗

y(t∗, p∗)
(5c)

= s(t) − s(t∗). (5d)

Thus, the local sensitivity coefficients s′(t) are shifted by the respective local sensitivity
s(t∗) of the reference experiment. Hence all sensitivity coefficients become zero at the
reference conditions, i.e. s′ij(t∗) = 0.
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In summary, normalized local sensitivity coefficients are invariant under rescal-
ing of model variables and parameters. Additional normalization to a parameter
dependent reference experiment shifts the sensitivity courses by the local sensitiv-
ity coefficient of the reference experiment. Hence the sensitivity coefficient becomes
zero at the reference experiment. Positive values s′ij(t) indicate that the relative
change of the respective concentration exceeds that of the reference experiment,
while negative values indicate that the relative change in the reference experi-
ment is larger. In order to interpret these results in terms of the total concen-
trations, one has to take the sensitivity value of the reference experiment into
account.

Variance-based global sensitivity analysis

Variance-based sensitivity analysis decomposes the variance of the output Y due to vari-
ations in the input parameters into contributions from different inputs. Here we exploit
the Sobol sensitivity analysis method, shortly Sobol method, which can be applied to any
non-linear differential equation model. Generally, this method decomposes the variance
of each output into a sum of 2k − 1 terms, k denoting the number of influential param-
eters, that describe the contribution of each possible parameter subgroup to the total
variance. A more detailed mathematical description of this method is provided in [16, 17]
and is recapitulated in the Methods section. Computations can drastically be reduced by
only considering the so-called first order and total effect sensitivity indices Si and STi ,
i = 1, . . . , k. The first order indices quantify the contribution of variations in param-
eter Pi only to the total output variance, while STi , on the other side of the spectrum,
is the overall effect of parameter Pi, in contribution with variations of all possible com-
binations of the other parameters. Thus, STi ≥ Si, and the difference quantifies the
interaction of parameter Pi with the other model parameters. Furthermore, STi, Si ∈
[ 0, 1], and STi = 0 implies that Pi has no effect at all on the output, while STi = 1
indicates that the output variance can completely be assigned to the variance in the
factor Pi.
In order to show the effect of rescaling on these two sensitivity indices, we use the

variance-based definition, which reads for Si

Si := VarPi(E∼Pi(Y |Pi = p∗
i ))

Var(Y )
. (6)

In this approach, parameters P and outputs Y are random variables, and Y is
a short notation for a single output variable yj(t, p) at a particular time point t.
E∼Pi(Y |Pi = p∗

i )) denotes the expectation value of Y when varying all parameters
except Pi (∼ Pi := P \ Pi), which is fixed to a value p∗

i . VarPi is the variance
of this expected value when varying Pi in a predefined range. Si is VarPi normal-
ized to the total variance Var(Y ) in Y. The Sobol method assumes that all parame-
ters Pi are independent and uniformly distributed random variables, Pi ∼ U[ pli, pui ].
If upper and lower bounds are appropriately chosen, Si is invariant under rescaling
of parameters and variables. To show this, we consider again the first-order sensi-
tivity index of the output Ỹ = aY of a rescaled model version with parameters
P̃ = bP:
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S̃i = VarP̃i(E∼P̃i(Ỹ |P̃i = p̃∗
i ))

Var(Ỹ )
(7a)

= VarPi(E∼Pi(aY |Pi = p∗
i ))

Var(aY )
in case that p̃l/ui = bpl/ui (7b)

= VarPi(aE∼Pi(Y |Pi = p∗
i ))

a2 Var(Y )
(7c)

= a2 VarPi(E∼Pi(Y |Pi = p∗
i ))

a2 Var(Y )
(7d)

= VarPi(E∼Pi(Y |Pi = p∗
i ))

Var(Y )
(7e)

= Si. (7f)

From these calculations we see that S̃i = Si if we choose P̃i ∼ U[bpli, bpui ]. Invariance of
the total order index can be shown accordingly. Using

STi := 1 − Var∼Pi(EPi(Y |P∼Pi))

Var(Y )
, (8)

we get

S̃Ti = 1 − Var∼P̃i(EP̃i(Ỹ |P̃∼P̃i))

Var(Ỹ )
(9a)

= 1 − Var∼Pi(EPi(aY |P∼Pi))

Var(aY )
in case that p̃l/ui = bpl/ui (9b)

= 1 − a2 Var∼Pi(EPi(Y |P∼Pi))

a2 Var(Y )
(9c)

= 1 − Var∼Pi(EPi(Y |P∼Pi))

Var(Y )
(9d)

= STi . (9e)

The change of the Sobol indices caused by normalization to a parameter dependent
reference experiment is generally more difficult. Using Y ′ = Y/Yr , where Yr denotes the
reference experiment, and the formal definition of Si, we get

S′
i = VarPi

(
E∼Pi

( Y
Yr |Pi = p∗

i
))

Var
( Y
Yr
) . (10)

Thus, S′
i and S′

Ti contain expectation values and variances of ratios of random variables,
which cannot further be resolved in the general case. Hence, such a normalization to a
reference experimentmight generally change the outcome of this sensitivity analysis com-
pletely. Furthermore, since ratio distributions can be difficult to handle, and in particular,
moments might even not be defined at all [20, 21], a reference experiment normalization
can considerably complicate this kind of sensitivity analysis. At least, convergence has to
be checked carefully for a Monte Carlo implementation of the method.

Case study I: sensitivity analysis for a simple reversible reaction

For illustration purposes, we first consider the effect of rescaling and normalization on a
simple reversible reaction,

which is described via mass action kinetics and can be solved analytically. State variables
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of model A correspond to absolute protein concentrations. For this model version and
initial condition xA(0) = xA0 we get

ẋA = k1 − k2xA yA(t) = xA(t) = e−k2txA0 + k1
k2

(
1 − e−k2t

)
. (11)

Model version B is obtained via rescaling the state variable to xA0 , i.e. xB(t) = xA(t)/xA0 ,

ẋB = kB1 − kB2 x
B yB(t) = xB(t) = e−kB2 t + kB1

kB2

(
1 − e−kB2 t

)
, (12)

with parameters kB1 = k1/xA0 and kB2 = k2. For model version C we consider the case of
additional normalization of the output variable to the state of the system at a reference
time point t∗ = 1,

yC(t) = xB(t)/xB(1). (13)

Case study I: local sensitivity analysis

Normalized local sensitivities sk1(t) of model outputs with respect to the parameter k1
can be calculated analytically for all three model variants,

sAk1(t) = e−k2t − 1

(e−k2t − 1) − k2
k1

e−k2txA0
(14a)

sBkB1
(t) = e−kB2 t − 1(

e−kB2 t − 1
)

− kB2
kB1

e−kB2 t
(14b)

sCkB1
(t) = sBkB1

(t) − sBkB1
(1). (14c)

It can easily be seen that sAk1 = sBkB1
. Moreover, sCkB1

is obtained via shifting sBkB1
by the

sensitivity −sBkB1
(1) of the reference experiment. Figure 1 illustrates these results. We also

remark that kB2 remains the only influential parameter for model C in case of xA0 = 0.

Fig. 1 Local sensitivity analysis of a simple reversible reaction. Top:Model trajectories for model versions A
(left), B (center) and C (right) and parameters k2 = 1, x0 = 0.2, k1 as indicated. Bottom: Respective normalized
local sensitivity coefficients, obtained with parameters k1 = 1, kB1 = 5 and kC1 = 5
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Case study I: global sensitivity analysis

In order to illustrate the effect of rescaling and normalization for the outcome of the
global sensitivity analysis, we consider the case of uniformly distributed parameters
k1, k2 ∼ U(1, 2). In the following, we focus our analysis on steady state sensitivity, i.e.
yA = ȳA = k1/k2. The resulting probability density fYA

(
yA
)
of this output can be derived

by geometrical arguments and reads

fYA

(
yA
)

=

⎧⎪⎪⎨
⎪⎪⎩
2 − 1

2
(
yA
)2 y ∈ [0.5, 1]

2
(yA)2

− 1
2

y ∈ (1, 2] ,
(15)

with variance

Var(YA) = E

((
YA
)2)− E

2
(
YA
)

(16a)

=
∫ 2

0.5

(
yA
)2

fYA

(
yA
)
dyA +

(∫ 2

0.5
yAfYA

(
yA
)
dyA

)2
(16b)

= 7
6

−
(
3
2
ln 2

)2
(16c)

≈ 0.08565. (16d)

The first order Sobol indices

sAk1 = Vark1
(
Ek2(YA|K1 = k∗

1)
)

Var(YA)
and sAk2 = Vark2

(
Ek1(YA|K2 = k∗

2)
)

Var(YA)
, (17)

will in the following be calculated analytically. We start with sAk1 . The measure
Ek2(YA|K1 = k∗

1) denotes the expected value of YA for a fixed value k∗
1 and is obtained

via a density transformation. Setting yA = g(k2) = k∗
1/k2, which is strictly monotonically

decreasing, we get

f k
∗
1

YA

(
yA
)

=

⎧⎪⎨
⎪⎩

f k
∗
1

K2

(
g−1(yA)

) ·
∣∣∣∣∣dg

−1(yA)

dyA

∣∣∣∣∣ yA ∈ [g(2), g(1)]

0 otherwise
(18a)

=
⎧⎨
⎩

k∗
1

(yA)2
yA ∈

[k∗
1
2
, k∗

1

]
0 otherwise.

(18b)

The expectation value Ek2(YA|K1 = k∗
1) and Vark1

(
Ek2(YA|K1 = k∗

1)
)
can be derived

from this density via

Ek2(Y
A|K1 = k∗

1) =
∫ k∗

1

k∗1
2

yA
k∗
1

(yA)2
dyA = k∗

1 ln 2 (19)

and

Vark1
(
Ek2(Y

A|K1 = k∗
1)
)

= 1
12

(2 ln 2 − ln 2)2, (20)

which gives sAk1 ≈ 0.4675.
The index sAk2 is obtained in the same way: Setting g(k1) = k1/k∗

2 , we get

f k
∗
2

YA(yA) =
⎧⎨
⎩ k∗

2 yA ∈
[
1
k∗
2
,
2
k∗
2

]
0 otherwise,

(21)
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which gives

Ek1(Y
A|K2 = k∗

2) =
∫ 2

k∗2
1
k∗2

yAk∗
2dy

A = 3
2k∗

2
(22)

and

Vark2
(
Ek1(Y

A|K2 = k∗
2)
)

= 9
8

− 9
4
(ln 2)2. (23)

Thus, we obtain sAk2 ≈ 0.5135. The interaction effects can be extracted via

sAk1,k2 = Vark1,k2
(
E(YA|k∗

1 , k∗
2)
)

Var(YA)
− sAk1 − sAk2 (24a)

= 1 − sAk1 − sAk2 (24b)

≈ 0.01905, (24c)

which leads to total effect indices

sAT1
= sAk1 + sAk1,k2 ≈ 0.4865 (25a)

sAT2
= sAk2 + sAk1,k2 ≈ 0.5506. (25b)

This analysis is visualized in Fig. 2. Overall, this analysis shows that varying the parame-
ter k2 has a slightly higher impact on the output variance than variations of the parameter
k1, though both contributions are of the same order of magnitude. Furthermore, the inter-
action effect of both parameters is small, and the total effect indices are not much larger
than the respective first order indices.
Sobol sensitivity indices are the same for model version B, provided that kB1 = k1/xA0 is

sampled from kB1 ∼ U
(
1/xA0 , 2/x

A
0
)
.

Fig. 2 Global sensitivity analysis of a simple reversible reaction. Top: Density in the parameter space,
k1, k2 ∼ U(1, 2) (left), Output density for the two extreme k∗1 values (center), Output density as function of k∗1
(right). Bottom: Output density obtained by transformation, as described in the text (left), Output density for
the two extreme k∗2 values (center), Output density as function of k∗2 (right).
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The steady state output of model version C reads

yC = 1

e−kB2 ·
(
kB2
kB1

− 1
)

+ 1
. (26)

Again kB1 is sampled from kB1 ∼ U
(
1/xA0 , 2/x

A
0
)
. Since a completely analytical treatment

analogous to model version A is difficult here, Sobol indices were calculated via Monte
Carlo simulations, as illustrated in Fig. 3. Interestingly, the Sobol indices of the normalized
model version C are very different from model versions A and B, namely

sCk1 ≈ 0.021 (27a)

sCk2 ≈ 0.976 (27b)

sCT1
≈ 0.024 (27c)

sCT2
≈ 0.980. (27d)

Figure 3 shows that the shape of the density fYC
(
yC
)
is different from fYA

(
yA
)
(bottom

left). Furthermore, as can be seen from the Sobol indices, most of the variance of YC is
attributed to variations in the parameter kB2 , while the parameter kB1 has only a marginal
influence. Also the interaction effect between both parameters is not very large. These
results are reflected in the Figures on the right hand side: The remaining variance in
YC when fixing kB1 at a certain value (top right) is much higher than the respective vari-
ance when fixing kB2 (bottom right), and this is true for all possible values of kB1 and kB2 .
Moreover, while the mean value EYC |kB,∗1

(
YC) does hardly change as a function of kB,∗1 ,

EYC |kB,∗2

(
YC) highly varies as a function of kB,∗2 , resulting in a small first order Sobol index

sCkB1
and a large Sobol index sCkB2

.
Overall, results on this simple toy model illustrate the effect of rescaling and normal-

ization on sensitivity analysis.

Fig. 3 Global sensitivity analysis of a simple reversible reaction. Top: Density in the parameter space,
kB1 ∼ U(1/xA0 , 2/x

A
0 ) and kB2 ∼ U(1, 2) (left), Output density as function of sample points of kB1 (right). Bottom:

Output density obtained via MC integration (left), Output density as function of sample points of kB2 (right)
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Case study II: a model for the MAPKmodule in PC-12 cell lines

The Mitogen-activated protein kinase (MAPK) cascade is a conserved signaling module
that is part of various signaling pathways. It is a three-tired phosphorylation cascade,
which involves the proteins Raf, MEK and ERK. Raf is activated by Ras upon stimulation,
which then triggers the double phosphorylation of MEK. Phosphorylated MEK in turn
phosphorylates and thereby activates ERK, which also requires double phosphorylation
to become fully active. ERK has a lot of substrates that regulate different cellular fates.
The MAPK pathway is a well investigated signaling module from an experimental and a
modeling point of view [22–24]. It can show a rich variety of different behaviors such as
oscillations, ultrasensitivity, or bistability and has been investigated in different contexts.
Specificity in the response of the MAPK module to different ligands, which ensures a

reliable processing of signals, is achieved through different courses in ERK activity, which
in turn regulate ERK substrate activation. In particular, the MAPK module involves sev-
eral feedback regulations, which are important to shape ERK response. Most importantly,
ERK interacts with Raf via different mechanisms in a context dependent manner. This
has been exemplified in a study with PC-12 cell lines, in which the MAPK signaling path-
way was investigated upon stimulation with epidermal growth factor (EGF) and neuronal
growth factor (NGF) [14]. PC-12 cells show a transient ERK activity after stimulation with
EGF, and cells start to proliferate. In contrast, ERK activity is sustained for at least one
hour after stimulation with NGF, and NGF triggers differentiation.
Here we analyze a model that has been calibrated to experimental data from Santos

et al. [14] and involves a context-dependent feedback term from ERK to Raf. Details of
the modeling process are described in [15]. In this model, mass action kinetics is used to
describe the phosphorylation and dephosphorylation reactions. Feedback from ERK to
Raf is described in a non-linear way. Assuming mass conservation for the total amounts
of proteins in the cascade,

RafTOT = Raf + pRaf (28a)

MEKTOT = MEK + ppMEK (28b)

ERKTOT = ERK + pERK + ppERK, (28c)

allows to eliminate the variables Raf, MEK and ERK. The resulting model has four state
variables, which correspond to pRaf, ppMEK, pERK and ppERK. For our sensitivity anal-
ysis procedure, we focus on the response of the system to stimulation with NGF in the
control case, which allows to simplify the model in [15] accordingly. The model structure
is shown in Fig. 4a.
Model variant A is an unnormalized version, whose state variables correspond to the

actual amounts of these four proteins. The ODE model corresponding to model version A
is shown in Fig. 4b.
Reaction rate constants are denoted by k(+/−)

i and k̃(+/−)
i . The input u(t) mimics

transient Ras activation upon stimulation and is described by a sigmoidally decreasing
function. The positive feedback from ERK to Raf is described by a Hill-type function. The
Hill coefficients were set tom = 5 andM = 3.
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a NGF b

Fig. 4 MAPK graph and ODE model version A

For this model version we define the outputs

yA1 (t, p̃) = pRaf(t, p̃) (29a)

yA2 (t, p̃) = ppMEK(t, p̃) (29b)

yA3 (t, p̃) = ppERK(t, p̃), (29c)

where p̃ denotes the vector of parameters of the system.
This model was calibrated to Western blot data, which provide light intensities that

are scaled to the signal of the respective total protein. Hence the measured signals are
proportional to the fraction of phosphorylated protein concentrations relative to the total
protein amounts,

x1 = α1 · pRaf
RafTOT

x2 = α2 · ppMEK
MEKTOT

x3 = α3 · pERK
ERKTOT

x4 = α4 · ppERK
ERKTOT

.

The factors of proportionality αi account for differences in binding affinities of the anti-
bodies and variations in membranes. Since we only have measurements for pRaf, ppMEK
and ppERK, but not for the intermediate product pERK, we set without loss of generality
α3 = 1. The transformed system reads

ẋ1 = k+
1 (α1 − x1)u − k−

1 x1 + kFp
xm4

xm4 + (
gα4

)m (α1 − x1)

ẋ2 = k+
2 (α2 − x2)

1
α1

x1 − k−
2 x2

ẋ3 = k+
3 (1 − x3 − 1

α4
x4)

1
α2

x2 + k−
4

1
α4

x4 − k−
3 x3 − k+

4
1
α2

x3x2

ẋ4 = k+
4

α4
α2

x3x2 − k−
4 x4.
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Compared to model version A, also some of the rate constants had to be rescaled, in
particular,

k+
2 = k̃+

2 RafTOT (31a)

g = g̃
ERKTOT

(31b)

k+
3 = k̃+

3 MEKTOT (31c)

k+
4 = k̃+

4 MEKTOT. (31d)

This defines model B, whose variables correspond to quantities proportional to the
fractions of phosphorylated proteins. Hence the output variables of model B are

yB1 (t, p) = x1(t, p) (32a)

yB2 (t, p) = x2(t, p) (32b)

yB3 (t, p) = x4(t, p), (32c)

where p denotes the vector of rescaled parameters, obtained from p̃.
The scaling factors αi are unknown and can be very different for different proteins and

different replicates. In order to get rid of these factors and to enable a comparison between
different experimental replicates, data and model are normalized to a reference experi-
ment. Here we adapted our choice of reference experiment to the data in Santos et al.
[14], where the signals at t = 5 min were set to one individually for each protein. Hence
measurements were compared to the third set of model outputs

yC1 (t, p) = yB1 (t, p)
yB1 (t∗ = 5min, p)

(33a)

yC2 (t, p) = yB2 (t, p)
yB2 (t∗ = 5min, p)

(33b)

yC3 (t, p) = yB3 (t, p)
yB3 (t∗ = 5min, p)

, (33c)

which define model C. The model parameters, which we use here for our analysis,
correspond to the MAP estimate in [15] and are listed in Table 1.

Case study II: local sensitivity analysis

Figure 5 shows the normalized local sensitivity coefficients sij(t) for model variants A
and B, which have been calculated via the direct differential method, as explained in
the Methods section. Since the system is monotone (i.e. all feedback circuits are pos-
itive and the system has a monotone flow [25]) and hence the courses are similar for
all three components, the results are shown for ppERK only. The phosphorylation rates
k+
1 , k

+
2 , k

+
3 and k+

4 all have a positive effect, which is transient in case of k+
1 and shows a

transient behavior, followed by a second increase towards t = 60 min for k+
2 , k

+
3 , k

+
4 . This

reflects the fact that the system shows a quasi-bistable behavior, meaning that the system
is monostable but able to maintain a state different from zero for a very long time upon a
transient signal and returns to its steady state at zero only at a later time point (for more

Table 1MAP parameter values used for the sensitivity analysis

θ log k+1 log k+2 log k+3 log k+4 log k−1 log k−2 log k−3 log k−4 log kFp log g K

θ̂MAP –5.7324 7.3475 7.8110 2.3365 –0.0865 6.2055 6.8132 –0.4295 -5.9037 –5.8563 5.6202
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Fig. 5 Local sensitivity analysis for model variants A and B. Normalized local sensitivity coefficients for model
output y3(t) of model variants A and B

details on this phenomenon see [15]). Similarly, all dephosphorylation rates have nega-
tive sensitivity coefficients, which become most influential at later time points, since they
inversely regulate the duration of sustained response. As expected, the rate constant kFp
and the threshold parameter g in the non-linear feedback term have positive and negative
influences, respectively, that are increasing over time.
Overall, the results of this local sensitivity analysis are plausible given the model struc-

ture. The results in particular show that the early transient behavior of the cascade is
mainly determined by the phosphorylation rates. Moreover, the time point at which tra-
jectories return to their steady state is very sensitive to changes in most parameters, k+

1
and K being the only exceptions.
Figure 6 shows respective results for model version C with t∗ = 5 min. Indeed, the

courses are equivalent to those of model versions A and B, but shifted by−s(t∗). This shift
causes sign changes for all sensitivity coefficients. For example, in the first picture of the
second row in Fig. 6, where i = 3 and j = 5, referring to pj = k−

1 , s′ij(t) > 0 for t < t∗ and
s′ij(t) < 0 for t > t∗. This means that the relative change in y(t, p) when varying p around
p∗ is larger than the relative change in the reference value y(t∗, p) for t < t∗, and vice
versa for t > t∗. This generally renders the interpretation of the sensitivity coefficients
more difficult. In particular, it is not possible to extract the effect on the unnormalized
concentrations from these courses without additionally taking the value sij(t∗) itself into
account.

Case study II: Variance-based global sensitivity analysis

Figure 7 shows the results of Sobol’s sensitivity analysis for model variants A and B. We
have chosen Pi ∼ U[0.1p∗

i , 10p∗
i ]. First order indices are depicted in the first row, total

effect indices are shown in the second row, for pRaf (left), ppMEK (center) and ppERK
(right). It can be seen that first order indices decrease over time for all variables, while
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Fig. 6 Local sensitivity analysis for model variant C. Normalized local sensitivity coefficients for model output
y3(t) of model variant C

total effect indices increase at the same time, indicating that interaction effects between
parameters gain importance over the duration of the signal response.
Looking at the first order indices, the number of influential factors increases from Raf

to MEK, which is naturally expected, since the signal mainly propagates in this direction.
Consequently, pRaf is mainly influenced by the rate constants of its own dephosphoryla-
tion, followed by it’s phosphorylation rate k+

1 , which is more dominant in the beginning
of the response, where it determines the speed of Raf activation. Raf activity is further-
more weakly dependent on the feedback strength kFp. In addition, the phosphorylation
and dephosphorylation rates of MEK come into play in the first order Sobol sensitivities
of MEK. Finally, the course of ppERK is influenced by a mixture of rate constants of Raf,
MEK and ERK phosphorylation and dephosphorylation.
The values of the sums of total effect indices, which are shown in the second row,

are much larger than the first order indices, indicating that interaction effects have
an important impact on the overall variance of the model outputs. Compared to the
first order effects, some new parameters appear, such as the parameter K, which
had little effect as first order indices. This indicates that K influences the model
output mainly via interactions with other parameters. While Raf is still mainly influ-
enced by its dephosphorylation rate, the number of influential parameters increases
from Raf to MEK, and ERK activity is regulated by a mixture of various total effect
indices.
Since pERK is a hidden variable that is not observed, its phosphorylation and dephos-

phorylation rates k+
3 and k−

3 have only a marginal influence on model outputs. This
is probably also due to the fact that pERK is an intermediate product between inac-
tive non-phosphorylated and fully active, double phosphorylated ERK, which often has a
buffering role and makes the overall system less sensitive to changes in e.g. total protein
concentrations.
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Fig. 7 Sobol sensitivity analysis applied to model versions A and B of the MAPK module. First row: First order
indices, Second row: total effect indices

As outlined above, Sobol sensitivity indices are generally different for model versions B
and C. The analysis results for model version C with reference time point t∗ = 5 min are
shown in Fig. 8. As expected, the picture is indeed completely different from Fig. 7, show-
ing that normalization of the variables has in fact a large impact on sensitivity analysis.
Most strikingly, normalization seems to cause large interaction effects between almost all
parameters in this case study. Furthermore, all three observables are now influenced by
many more parameters than before.
It can further be seen that the first order indices rapidly decrease over time for all

three observables, and are nearly zero at t = 60 min after stimulation. The first order
sensitivities for Raf and MEK are almost indistinguishable, which probably comes from
the fact that both components also have very similar time courses after normalization.
Similar to model version A, all three components are highly dominated by the dephos-
phorylation rate of Raf. Different from model version A, the feedback parameters kFp, g,
M and K become more prominent in the course of the first order indices especially for
Raf and MEK. This is true for the first order and the total effect indices, and presum-
ably comes from the fact that it regulates to a certain extend the time and the height of
the maxima of all components, and therefore causes variances in the experiment used for
normalization. The first order indices are all rather small for ERK over the entire time
course.
The sum of total order effects are much larger than in model variant A for all time

points and all components, showing that normalization indeed increases interaction
effects among parameters. Moreover, all three components show a well balanced mixture
of total order effects of all model parameters, suggesting that all normalized components
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Fig. 8 Sobol sensitivity analysis applied to the MAPK model version C. First row: First order indices, Second
row: total effect indices

are highly interconnected. Interpretation of Sobol indices of model version C and their
meaning for the biological system is generally difficult.

Conclusions
We have demonstrated that normalized sensitivity coefficients and Sobol indices are
invariant under simple rescaling of model variables and parameters. This is, however,
different for a normalization to a reference experiment, whose value depends itself
on model parameters. Such a normalization may change the results of both local and
global sensitivity analysis completely. This has to be taken into account when working
with relative data that are normalized to a reference experiment and models that are
normalized in the same way to reproduce these relative data. Interpretation of the sen-
sitivity coefficients or Sobol indices can be very difficult in this case. In particular, it is
generally not possible to extract any information about respective changes of the unnor-
malized model trajectories. A sensitivity coefficient near zero, for example, just indicates
that the relative changes of the reference experiment value and the respective consid-
ered model output are of the same order of magnitude. Thus, parameters that have a
large impact on model outputs and appear to be important in an unnormalized model
version, might have small sensitivity values in a normalized model version, and vice
versa.
Dealing with relative data and corresponding normalizedmodels generally poses a chal-

lenge from themodeling point of view. As shown in this work, it renders the interpretation
of sensitivity analysis and its meaning for the biological system a difficult task. Further-
more, related to this issue, it complicates model inference and in particular parameter
estimation. Parameter estimation is often formulated as an optimization problem with
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an objective function that comprises a comparison of the relative experimental data with
the respective model predictions. Evaluation of this objective function requires two sim-
ulations for one experimental value, the reference experiment value, which is used for
normalization, and the actual experiment. Hence although the objective function is inde-
pendent of any scaling factors, factors of proportionality α have to be chosen for the
individual simulations, which often causes numerical problems when not chosen prop-
erly. We also encountered such numerical instabilities in our sensitivity analyses, which
requires some care in the choice of these factors.
In conclusion, the calibration and analysis of normalized models is challenging, and

proper normalization methods and their impact on the analysis results remain an issue
for further studies.

Methods
Local sensitivity analysis and the direct differential method

Local sensitivity analysis investigates the influence of a parameter p on a model out-
put yi(t, p) around a reference parameter set p∗. Sensitivity coefficients are formally
defined as first-order partial derivatives of the model output yi(t, p) with respect to the
parameter pj,

Sij(t) = ∂yi(t, p)
∂pj

∣∣∣∣
p=p∗

. (34)

If not analytically available, Sij(t) can in the simplest case be approximated via finite
differences, i.e.

Sij(t) ≈ yi(t, p∗ + �pj) − yi(t, p∗)
�pj

, (35)

with �pj being a vector with zero entries except for component pj. This approximation
works quite well inmany settings, but robustness should be tested via varying the step size
�pj. The direct differential method instead solves a differential equation for the sensitivity
coefficients. Therefore, we consider the time evolution of Sij(t),

∂Sij(t)
∂t

= ∂

∂t

(
∂yi(t, p)

∂pj

)
(36a)

= ∂

∂pj

(
∂yi(t, p)

∂t

)
yi = xi (36b)

= d
dpj

fi(x(p, t), p, t) (36c)

= ∂fi(x, p, t)
∂pj

+
n∑

k=1

∂fi(x, p, t)
∂xk

dxk(t, p)
dpj

(36d)

= ∂fi(x, p, t)
∂pj

+
n∑

k=1

∂fi(x, p, t)
∂xk

∂xk(t, p)
∂pj

(36e)

= ∂fi(x, p, t)
∂pj

+
n∑

k=1
JikSkj. (36f)
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This can be summarized as⎛
⎜⎜⎜⎜⎜⎝

∂S1j
∂t

∂S2j
∂t
...

∂Snj
∂t

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

∂ f1
∂pj
∂ f2
∂pj
...

∂ fn
∂pj

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2 . . .

∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2 . . .

∂ f2
∂xn

...
...

. . .
...

∂ fn
∂x1

∂ fn
∂x2 . . .

∂ fn
∂xn

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎝

S1j
S2j
...
Snj

⎞
⎟⎟⎟⎟⎠ , (37)

or, in a more compact form,

Ṡj = fp + JSj Sij(0) = ∂xi(0, pj)
∂pj

i = 1, . . . , n. (38)

This differential equation system for Sj can be solved numerically. It involves the Jaco-
bian matrix Jf of the system, which has to be defined and implemented. The direct
differential method does not rely on the choice of an appropriate�p, but can be very time
consuming especially for larger systems.

Variance-based sensitivity analysis

The main idea of variance-based sensitivity analysis methods is to decompose the vari-
ance of a model outcome according to the input factors. Variance-based methods are
global methods, since they exploit the impact of parameters within a whole range of val-
ues. Moreover, in contrast to local sensitivity factors, they allow for the investigation of
interaction effects between groups of parameters. Sobol indices are sensitivity measures
that are based on average partial variances.
To simplify notation, we adapt in the following to formulas derived in [16, 17], where

Y denotes a particular scalar model output (i.e. an output variable at a particular time
point) and X is the set of model parameters. Similar to a Bayesian framework, X ∈ R

n are
random variables, and Y is considered to be a function of these input parameters,

Y = f (X1, . . . ,Xn), (39)

with expectation value E(Y ) and variance Var(Y ). Importantly, all Xi are assumed to be
independent for the following procedure, and hence can be drawn independently from
their marginal distributions.
In order to investigate the contribution of each factor Xi to the total variance Var(Y ),

we average over the conditional variances, which is the resulting variance of Y when the
factor Xi is fixed to a value x∗

i ,

EXi(Var∼Xi(Y |Xi = x∗
i )). (40)

Here, the expectation is taken with respect to the values that Xi can take, and
Var∼Xi(Y |Xi = x∗

i ) is the conditional variance of Y after fixing Xi to a value x∗
i . According

to the law of total variance, Var(Y ) can be decomposed as

Var(Y ) = EXi(Var∼Xi(Y |Xi = x∗
i )) + VarXi(E∼Xi(Y |Xi = x∗

i )). (41)

Figure 9 illustrates this decomposition. The two figures on top correspond to the den-
sity plots on the right hand sides of Figs. 2 and 3. In Fig. 2 the densities fYA|k∗

1
and fYA|k∗

2
are analytically accessible, as described in the text, while these quantities are analyzed via
Monte Carlo sampling, as illustrated in Fig. 3. The summary statistics from these condi-
tional densities that are exploited in the Sobol analysis are presented in the figures on the
bottom in Fig. 9. Here, the terms Var∼Xi(Y |Xi = x∗

i ) andE∼Xi(Y |Xi = x∗
i ) are the variance
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Fig. 9 Illustration of Sobol indices. Left: Y is highly dependent on Xi , and so the first order Sobol index of this
parameter is high. Right: Fixing Xi does not have a large impact on Y , hence the first order Sobol index is small
here

and expectation value of Y within a slice Xi = x∗
i , and Var(Y ) is given as the expectation

of variances and the variance of expectations over all slices. This figure shows that if Y
and Xi are highly correlated, then the first term in Eq. (41) is small, and the second term
is large. Hence it is reasonable to define the first-order sensitivity index of Xi on Y as

Si := VarXi(E∼Xi(Y |Xi = x∗
i ))

Var(Y )
∈ [0, 1] . (42)

The idea of conditional variance can be extended by conditioning to two or more
factors, i.e.

VarXi,Xj(E∼Xi,Xj(Y |Xi = x∗
i ,Xj = x∗

j ))

Var(Y )
= Var cij

Var(Y )
= Si + Sj + Sij i �= j, (43)

where Var cij measures the joint effect of Xi and Xj on the output Y. Sij is denoted second-
order index. Higher-order indexes can be derived accordingly.
In fact, it was shown that the total variance can be decomposed into effects of different

orders ([16] and references therein),

n∑
i=1

Si +
∑
i

∑
j>i

Sij +
∑
i

∑
j>i

∑
k>j

Sijk + . . . + S12...n = 1. (44)

This gives rise to define the total effect term for each parameter as

STi := 1 − Var∼Xi(EXi(Y |X∼Xi))

Var(Y )
, (45)

which contains all terms of any order that include xi.
The Russian mathematician I.M. Sobol proposed a straightforward Monte Carlo-based

estimation procedure for the first and total order sensitivity indices for the special case
that the Xi are sampled from the standard uniform distribution U(0, 1).
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Assuming f is square-integrable, we consider an expansion of f into a sum of terms of
increasing dimension,

f (X) = f0 +
∑
i
fi(Xi) +

∑
i

∑
j>i

fij(Xi,Xj) + . . . + f12...n(X1, . . . ,Xn), (46)

which is unique if each term has zero mean, since all terms are orthogonal in pairs in this
case, ∫

f�i(x�i)f�j(x�j)dx�idx�j = 0, (47)

with �i and �j denoting subsets of the index set {1, . . . , n}.
In particular, we can identify

f0 = E(Y ) (48)

fi(Xi) = E∼Xi

(
Y |Xi = x∗

i
)− E(Y ) (49)

fij(Xi,Xj) = E∼Xi,Xj

(
Y |Xi = x∗

i ,Xj = x∗
j

)
− fi(Xi) − fj(Xj) − E(Y ), (50)

and, comparing with Eq. (42), we see that

Si · Var(Y ) = VarXi(fi(Xi) + f0) =: Vari . (51)

Moreover,

Varij := VarXi,Xj(fij(Xi,Xj)) (52a)

= VarXi,Xj(E∼Xi,Xj(Y |Xi,Xj))︸ ︷︷ ︸
=:Varcij

− (52b)

−VarXi(E∼Xi(Y |Xi)) − VarXj(E∼Xj(Y |Xj)). (52c)

Varij is denoted second-order effect. Using the expansion in Eq. (46) to calculate the
variance Var(Y ), and exploiting that the means of the individual summands vanish and
that the terms are orthogonal, we get the following decomposition

Var(Y ) =
∫

(y − E(Y ))2dy = E(Y 2) − E
2(Y )

=
∫ ⎡
⎣∑

i
fi(xi) +

∑
i

∑
j>i

fij(xi, xj) + . . . + f12...n(x1, . . . , xn)

⎤
⎦2

dx1 . . . dxn

=
∑
i

∫
f 2i (xi)dxi +

∑
i

∑
j>i

∫
f 2ij (xi, xj) + . . . +

∫
f 212...n(x1, . . . , xn)dx1 . . . dxn

=
∑
i
Vari +

∑
i

∑
j>i

Varij + . . . + Var1...n,

which, upon division by Var(Y ), leads to∑
i
Si +

∑
i

∑
j>i

Sij + . . . + S1...n = 1. (53)

This decomposition gives rise to define the total effect index STi of a component Xi as
the total effect of Xi on Y, which is the sum of all sensitivity indices containing Xi. STi = 0
implies that Xi does not influence Y at all and hence Xi could for instance be set to a fixed
value for further analysis.
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Notably, STi can be calculated as efficiently as the first order indices. Therefore, we again
exploit the law of total variance in the following way

Var(Y ) − Var∼Xi(EXi(Y |X∼i)) = E∼Xi(VarXi(Y |X∼i)), (54)

which leads via division by Var(Y ) to

STi = 1 − Var∼Xi(EXi(Y |X∼i)

Var(Y )
= E∼Xi(VarXi(Y |X∼i))

Var(Y )
, (55)

since E∼Xi(VarXi(Y |X∼i)) is the average variance after fixing all but variable Xi.
The numerical procedure that is used to estimate Si and STi is described in [16] and in

[26] (a more recent study with a focus on implementation is [27]) and uses Monte Carlo
integration to evaluate the integrals.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JK, CT and NR designed the study. CT, AJ and NR developed and provided the modeling framework. JK implemented the
sensitivity analysis methods and created the results with the help of all other authors. All authors wrote and approved
the manuscript.

Acknowledgements
This work was supported by the German Federal Ministry of Education and Research (BMBF) within the
e:Bio-Innovationswettbewerb Systembiologie project PREDICT (grant number FKZ0316186A) and the German Research
Foundation (DFG) within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart.

Received: 15 January 2016 Accepted: 7 April 2016

References
1. Segel LA. Modeling Dynamic Phenomena in Molecular and Cellular Biology. Cambridge: Cambridge University Press;

1984.
2. Möller Y, Siegemund M, Beyes S, Herr R, Lecis D, Delia D, Kontermann R, Brummer T, Pfizenmaier K, Olayioye M.

EGFR-targeted TRAIL and a Smac mimetic synergize to overcome apoptosis resistance in KRAS mutant colorectal
cancer cells. PLoS ONE. 2014;9(9):e107165.

3. Zinöcker S, Vaage J. Rat mesenchymal stromal cells inhibit T cell proliferation but not cytokine production through
inducible nitric oxide synthase. Front Immunol. 2012;3(62):1–13.

4. Taylor SC, Posch A. The design of a quantitative Western blot experiment. BioMed Res Int. 2014;2014:8. Article ID
361590.

5. Degasperi A, Birtwistle MR, Volinsky N, Rauch J, Kolch W, Kholodenko BN. Evaluating strategies to normalize
biological replicates of Western Blot data. PLoS ONE. 2014;9(1):e87293.

6. Kreutz C, Rodriguez MMB, Maiwald T, Seidl M, Blum HE, Mohr L, Timmer J. An error model for protein
quantification. Bioinformatics. 2007;23(20):2747–53.

7. Thomaseth C, Radde N. Normalization of Western blot data affects the statistics of estimators. 2016. Submitted to
FOSBE.

8. Saltelli A, Tarantola S, Campolongo F, Ratto M. Sensitivity Analysis in Practice: a Guide to Assessing Scientific
Models. Chichester: John Wiley & Sons; 2004.

9. Frank PM. Introduction to System Sensitivity Theory. New York: Academic Press Inc; 1978.
10. Zi Z. Sensitivity analysis approaches applied to systems biology models. IET Syst Biol. 2011;5(6):336–46.
11. Kim KA, Spencer SL, Albeck JG, Burke JM, Sorger PK, Gaudet S, Kim DH. Systematic calibration of a cell signaling

network model. BMC Bioinf. 2010;11(202):1–14.
12. Kiparissides A, Kucherernko SS, Mantalaris A, Pistikopoulus EN. Global sensitivity analysis challenges in biological

systems modeling. Ind Eng Chem Res. 2009;48(15):7168–80.
13. Kent E, Neumann S, Kummer U, Mendes P. What can we learn from global sensitivity analysis of biochemical

systems? PLoS ONE. 2013;8(11):e79244.
14. Santos SDM, Verveer PJ, Bastiaens PIH. Growth factor-induced MAPK network topology shapes Erk response

determining PC-12 cell fate. Nat Cell Biol. 2007;9(3):324–30.
15. Jensch A, Thomaseth C, Radde N. Sampling-based Bayesian approaches reveal the importance of quasi-bistable

behavior in cellular decision making processes on the example of the MAPK signaling pathway in PC-12 cell lines.
Under review. 2016. BMC Systems Biology (Under review).

16. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S. Global Sensitivity
Analysis: The Primer. Hoboken, NJ: John Wiley & Sons; 2008.

17. Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math
Comput Simul. 2001;55:271–80.

18. Zheng Y, Rundell A. Comparative study of parameter sensitivity analyses of the TCR-activated ERK-MAPK signalling
pathway. IEE Proc Syst Biol. 2006;153(4):201–11.



Kirch et al. EPJ Nonlinear Biomedical Physics  (2016) 4:3 Page 23 of 23

19. Zhang XY, Trame MN, Lesko LJ, Schmidt S. Sobol sensitivity analysis: a tool to guide the development and
evaluation of systems pharmacology models. CPT Pharmacometrics Syst Pharmacol. 2015;4:69–79.

20. Hinkley DV. On the ratio of two correlated normal random variables. Biometrika. 1969;56(3):635–9.
21. Marsaglia G. Ratios of normal variables. J Stat Softw. 2006;16(4):1–10.
22. Kholodenko B. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein

kinase cascade. Eur J Biochem. 2000;267(6):1583–88.
23. Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005;6:827–37.
24. Kolch W, Calder M, Gilbert D. When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett.

2005;579(8):1891–95.
25. Gouzé JL. Positive and negative circuits in dynamical systems. J Biol Syst. 1998;6(11):11–15.
26. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S. Variance based sensitivity analysis of model

output. Design and estimator for the total sensitivity index. Comp Phys Comm. 2010;181:259–70.
27. Bilal N. Implementation of Sobol’s method of global sensitivity analysis to a compressor simulation model. In: 22nd

Int. Compressor Eng. Conf. Purdue, USA: Purdue e-Pubs; 2014.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Results and discussion
	The effect of rescaling and normalization on sensitivity analysis
	Local sensitivity analysis
	Variance-based global sensitivity analysis

	Case study I: sensitivity analysis for a simple reversible reaction
	Case study I: local sensitivity analysis
	Case study I: global sensitivity analysis

	Case study II: a model for the MAPK module in PC-12 cell lines
	Case study II: local sensitivity analysis
	Case study II: Variance-based global sensitivity analysis


	Conclusions
	Methods
	Local sensitivity analysis and the direct differential method
	Variance-based sensitivity analysis

	Competing interests
	Authors' contributions
	Acknowledgements
	References

