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kinetics has become a standard approach in the last decades, and parameter
estimation poses several challenges. Sensitivity analysis is a powerful tool in model
development that can aid model calibration in various ways. Results can for example
be used to simplify the model by elimination or fixation of parameters that have a
negligible influence on relevant model outputs. However, models are usually subject to
rescaling and normalization to reference experiments, which changes the variance of
the output. Thus, the results of the sensitivity analysis may change depending on the
choice of these rescaling factors and reference experiments. Although it might
intuitively be clear, this fact has not been addressed in the literature so far.

Methods: In this study we investigate the effect of model rescaling and additional
normalization to a reference experiment on the outcome of two different sensitivity
analyses. Results are exemplified on a model for the MAPK pathway module in PC-12
cell lines. For this purpose we apply local sensitivity analysis and a global
variance-based method based on Sobol sensitivity coefficients, and compare the
results for differently scaled and normalized model versions.

Results: Results indicate that both sensitivity analyses are invariant under simple
rescaling of variables and parameters with constant factors, provided that sensitivity
coefficients are normalized and that the parameter space is appropriately chosen for
Sobol’s method. By contrast, normalization to a reference experiment that also
depends on parameters has a large impact on the results of any sensitivity analysis, and
in particular complicates the interpretation.

Conclusion: This work shows that, in order to perform sensitivity analysis, it is

necessary to take into account the dependency on parameters of the reference
condition when working with normalized model versions.

Keywords: Global sensitivity analysis, Sobol indices, Model rescaling, MAPK signaling
pathway
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Background

Ordinary differential equations are the most commonly used mathematical approach
to describe the dynamics of intracellular signaling pathways. They are often based on
chemical reaction kinetics, and standard ways to describe reaction rates exist. Several
models have been proposed for different signaling pathways, and analysis methods have
been developed and applied for further model investigation. Many of these models are
scaled and normalized to a predefined reference condition. Appropriate rescaling can
simplify the model and for example remove non-identifiable parameters (see e.g. [1]).
Normalization is often needed to compare models to any kind of normalized experimen-
tal data. A normalization of experimental data is generally required in all cases where
measured outcomes do not allow to extract absolute amounts, but only values that are
assumed to be proportional to these amounts. This is quite often the case, including for
example Western blot or FACS data. Western blotting is a technique to quantify pro-
tein amounts and their activity states. Detection works via the quantification of light
signals from antibodies that specifically bind to the protein under study. These light sig-
nals have to be normalized in a two-step procedure in order to enable a comparison
between different replicates. In a first step, signals are normalized to a loading con-
trol, in order to minimize artifacts that are due to different loading amounts. Second,
since raw signals depend on the specialties of the antibodies, the particular membranes
and chemicals in use, they are usually additionally normalized to a reference condi-
tion (for examples see [2, 3]). This second normalization is required for a comparison
of data from different replicates. Since Western blotting is also used more and more
frequently for a quantitative analysis, several studies are involved with the experimen-
tal protocols, testing of linear ranges, and proper normalization procedures [4, 5]. In
this work we use the term rescaling whenever model parameters and variables are mul-
tiplied by constant factors, which is often applied to obtain dimensionless models. In
contrast, normalization refers to conditioning data to a reference experiment, though
both terms are often used as synonyms in other references. From a modeling point of
view, rescaling and normalization must sometimes be treated differently, since the refer-
ence experiment usually also depends on parameters, and in particular, is itself subject to
variance.

Although normalized models are omnipresent all over, the effect of normalization on
model calibration and analysis has not been well-investigated so far, and is also poorly
understood. From a modeling point of view, the effect of normalization in a statisti-
cal framework for state estimation has been investigated [5-7]. Results indicate that
normalization might also have a crucial effect on parameter estimation.

Here we consider the effect of rescaling and normalization on sensitivity analysis.
Sensitivity analysis is one of the most important tools in model development and can
for example be used for model reduction, calibration, validation, robustness analysis
or the design of experiments. This type of model analysis is widely applicable in var-
ious scientific fields such as engineering, physics, economy, social sciences and many
more. Some nice examples from different applications are illustrated in [8]. Various
mathematical definitions of sensitivity functions exist, with different methods for their
computation. However, the common basic idea is to quantify the variation of an output
of a mathematical model due to variations of some input quantity, such as for exam-
ple a model parameter or an initial condition. In some cases, the output of interest is a
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time-invariant function of the input, for example the steady state of the system. When
considering dynamical systems, described for example with ODE models, the output of
interest is generally the whole trajectory of the state variable, rendering the analysis
more challenging. An introduction into sensitivity theory for continuous- and discrete-
time dynamical systems is provided in [9], with a particular focus on linear systems.
This book is mainly interesting for control engineering applications, since it defines
sensitivity functions in time and frequency domains, and investigates optimal control
systems. Zi et al. [10] and Kim et al. [11] instead provide good reviews about the appli-
cation of different sensitivity analysis methods in systems biology, including advices for
toolboxes and implementations and its role for model development. Further applica-
tion of global sensitivity methods on different biologically inspired example models are
described in [12] and [13], the former with a special focus on computational efficiency.
Kent et al. [13] define a sensitivity based robustness measure, which is evaluated on five
different models, including also a model for the steady states in the MAPK signaling
module.

In this study, we exemplarily investigate the impact of rescaling and normalization
to a reference experiment on sensitivity analysis for a toy model describing a sim-
ple reversible reaction to illustrate results and, as a real world case study, a model
of the MAPK signaling pathway module in PC-12 cell lines. For the latter we use a
model that was calibrated to Western blot data from an experimental study in San-
tos et al. [14]. Parameter estimation was done via a sampling-based Bayesian approach.
For this study we use the maximum-a-posteriori (MAP) estimator as a point estimate.
We compare results of local and global, variance-based sensitivity analysis methods on
three model versions. The native model version A describes the dynamics of activi-
ties of proteins that take part in the signaling cascade. In model B all variables are
rescaled to their respective total protein amounts, which are assumed to be conserved.
Thus variables represent fractions of total amounts. Finally, in order to compare this
model to Western blot data, the model output was additionally normalized to a refer-
ence condition, which defines model variant C. This last model version was the one
used in [15] for parameter estimation. We compare the results of local and global,
variance-based sensitivity analysis on these three model variants. We decided to use
the Sobol sensitivity analysis method [16, 17], since it is one of the most general meth-
ods that, different from other methods, does not rely on monotone or even linear
input/output relationships [10]. Moreover, Sobol sensitivity indices have been shown to
highly correlate with other sensitivity measures, such as indices from Extended Fourier
Amplitude Sensitivity Tests (FAST) and Partial Rank Correlation Coefficients (PRCC),
indicating a kind of robustness of these measures [18]. They are furthermore recently
pointed out as advantageous in other respects as well in connection with pharmacology
models [19].

The paper is structured as follows. We start deriving general results for the effect of
rescaling and normalization on local and global sensitivity analysis. These are compared
and discussed for all three model versions of the toy model, which partly allows to illus-
trate effects by analytic calculations. Then we introduce the ODE modeling approach
for the MAPK signaling pathway module and discuss numerically obtained results
for this case study. Details of the sensitivity methods can be found in the Methods

section.
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Results and discussion

The effect of rescaling and normalization on sensitivity analysis

Local sensitivity analysis

Local sensitivity analysis investigates the influence of a parameter p on a model output
yi(t, p) around a reference parameter set p*. Sensitivity coefficients are formally defined
as first-order partial derivatives of the model output y; with respect to the parameter pj,

9yi(t, p)
sy = 2B M
Pj - p=p*
In our analysis we consider the normalized sensitivity coefficients,
o) = 2080iEP) | dyitp) _ it,p) 7 @
i Bl —— == == .
! 3 log(p}) p=p* ap} yl(trp) p=p* 819/ p=p* )’i (t;P*)

The coefficients s;;(¢) are invariant under rescaling of model parameters and variables.
This can easily be verified. We consider two models 1 and 2 that only differ in their scales.
For simplicity we consider model 1 to have a single output y(¢, p) that depends on a single
parameter p. Both are rescaled in model version 2, i.e. p = bp and (¢, p) = ay(¢,p). The
normalized sensitivity 5(¢) of model 2 about a reference parameter value p* = bp* reads

Sk
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_ ady&p) bp* (3b)
bip |, ay(t,p*)
_ &p) r 30)
0p  |pp (& P¥)
= s(t), (3d)

which equals the normalized sensitivity coefficient s(¢) of model version 1.
Normalization of the model output to a (parameter dependent) reference experiment

at time t*,
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leads to the following normalized sensitivities s'(¢):

*
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= s(t) — s(t"). (5d)

Thus, the local sensitivity coefficients s'(¢) are shifted by the respective local sensitivity
s(¢*) of the reference experiment. Hence all sensitivity coefficients become zero at the

reference conditions, i.e. sgj(t*) =0.
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In summary, normalized local sensitivity coefficients are invariant under rescal-
ing of model variables and parameters. Additional normalization to a parameter
dependent reference experiment shifts the sensitivity courses by the local sensitiv-
ity coefficient of the reference experiment. Hence the sensitivity coefficient becomes
zero at the reference experiment. Positive values s;j(t) indicate that the relative
change of the respective concentration exceeds that of the reference experiment,
while negative values indicate that the relative change in the reference experi-
ment is larger. In order to interpret these results in terms of the total concen-
trations, one has to take the sensitivity value of the reference experiment into
account.

Variance-based global sensitivity analysis
Variance-based sensitivity analysis decomposes the variance of the output Y due to vari-
ations in the input parameters into contributions from different inputs. Here we exploit
the Sobol sensitivity analysis method, shortly Sobol method, which can be applied to any
non-linear differential equation model. Generally, this method decomposes the variance
of each output into a sum of 2¥ — 1 terms, k denoting the number of influential param-
eters, that describe the contribution of each possible parameter subgroup to the total
variance. A more detailed mathematical description of this method is provided in [16, 17]
and is recapitulated in the Methods section. Computations can drastically be reduced by
only considering the so-called first order and total effect sensitivity indices S; and St;,
i = 1,...,k The first order indices quantify the contribution of variations in param-
eter P; only to the total output variance, while S7,, on the other side of the spectrum,
is the overall effect of parameter P;, in contribution with variations of all possible com-
binations of the other parameters. Thus, S7; > S, and the difference quantifies the
interaction of parameter P; with the other model parameters. Furthermore, S7;,S; €
[0,1], and S7; = O implies that P; has no effect at all on the output, while S; = 1
indicates that the output variance can completely be assigned to the variance in the
factor P;.

In order to show the effect of rescaling on these two sensitivity indices, we use the
variance-based definition, which reads for S;

_ Varp,(E~p,(Y|P; = p}))

Si Var(Y)

(6)

In this approach, parameters P and outputs Y are random variables, and Y is
a short notation for a single output variable y;(t,p) at a particular time point .
E-p,(Y|P; = p})) denotes the expectation value of Y when varying all parameters
except P; (~ P; := P\ P;), which is fixed to a value p}. Varp, is the variance
of this expected value when varying P; in a predefined range. S; is Varp, normal-
ized to the total variance Var(Y) in Y. The Sobol method assumes that all parame-
ters P; are independent and uniformly distributed random variables, P; ~ U[ pf, ptl.
If upper and lower bounds are appropriately chosen, S; is invariant under rescaling
of parameters and variables. To show this, we consider again the first-order sensi-
tivity index of the output ¥ = aY of a rescaled model version with parameters
P =bP:
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. Vary (BE_; (Y|P, = p}))

Si = Var(Y) (72)
P k
= Varp, (EN\;ZE?;}LI)JL r) in case that faf/ "= bpf/ “ (7b)
_ Varp,(aE~p,(Y|P; = p7)) (7¢)
a? Var(Y)
_ a? Varp,(B~p,(Y|P; = p})) (7d)
a? Var(Y)
_ Varp, (E~p,(Y|P; = p})) (70)
Var(Y)
=S (71)

From these calculations we see that S; = S; if we choose P; ~ U [bpf, bp!]. Invariance of
the total order index can be shown accordingly. Using

Var~p, (Ep,(Y|P~p,))

S =1 — ’ 8
T Var(Y) ®
we get
. Var_p (B (YIP_p))
Sy = 1 kR TR (92)
Var(Y)
Varp. (Ep.(aY |P~p,
— -2 2l (@Y|P~p)) in case that[aﬁ/u :bpﬁ/u (9b)
Var(aY)
2 Var~p,(Ep,(Y|P~p,
_ @ Var p;(Ep,(Y|P~p,)) (9¢)
a’ Var(Y)
Varp. (Ep. (Y |P~p.
_q_ Var p;(Ep,(Y|P~p,)) (9d)
Var(Y)
= 5. (9e)

The change of the Sobol indices caused by normalization to a parameter dependent
reference experiment is generally more difficult. Using Y’ = Y/Y”, where Y” denotes the
reference experiment, and the formal definition of S;, we get

, _ Varp, (ENPi (%'Pi :p;'k))

S| = Var () . (10)

Thus, S; and §’; contain expectation values and variances of ratios of random variables,
which cannot further be resolved in the general case. Hence, such a normalization to a
reference experiment might generally change the outcome of this sensitivity analysis com-
pletely. Furthermore, since ratio distributions can be difficult to handle, and in particular,
moments might even not be defined at all [20, 21], a reference experiment normalization
can considerably complicate this kind of sensitivity analysis. At least, convergence has to
be checked carefully for a Monte Carlo implementation of the method.

Case study I: sensitivity analysis for a simple reversible reaction
For illustration purposes, we first consider the effect of rescaling and normalization on a
simple reversible reaction,

k

A == |,

ko

which is described via mass action kinetics and can be solved analytically. State variables
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of model A correspond to absolute protein concentrations. For this model version and
initial condition x4 (0) = xé we get

k
A=k —kx A0 =2 ) = e Rl ¢ /7; (1 - e*sz) . (11)
Model version B is obtained via rescaling the state variable to x‘g, ie. xB(t) = x4 (t)/x‘g,
kB
i = le — k'zng yB(t) =B = ekt + L (1 — e_kgt) , (12)
k3

with parameters k‘lg =k /xé and kZB = ky. For model version C we consider the case of
additional normalization of the output variable to the state of the system at a reference

time point t* = 1,
70 =2 /2" (). (13)
Case study I: local sensitivity analysis

Normalized local sensitivities s, (£) of model outputs with respect to the parameter k;

can be calculated analytically for all three model variants,

—kat __ 1
S = ¢ - (14a)
(e—ket — 1) — Fie—kztxé
KBt _
sps(t) = ‘ L (14b)
; k
(e_kgt - 1) - p%e_kgt
1
%m=%m—%m. (140)

It can easily be seen that s = sB;. Moreover, s is obtained via shifting s5; by the
ke K kf kf

sensitivity —sz (1) of the reference experiment. Figure 1 illustrates these results. We also
1

remark that k% remains the only influential parameter for model C in case of x} = 0.

KB

Ag,'bu) [

t t t
Fig. 1 Local sensitivity analysis of a simple reversible reaction. Top: Model trajectories for model versions A
(left), B (center) and C (right) and parameters k, = 1,xyp = 0.2, ky as indicated. Bottom: Respective normalized
local sensitivity coefficients, obtained with parameters k; = 1,k‘f =5and k]C =5
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Case study I: global sensitivity analysis
In order to illustrate the effect of rescaling and normalization for the outcome of the
global sensitivity analysis, we consider the case of uniformly distributed parameters
ki,ky ~ U(1,2). In the following, we focus our analysis on steady state sensitivity, i.e.
y4 = 74 = ki /ky. The resulting probability density fy4 (yA) of this output can be derived
by geometrical arguments and reads

5 y €[0.5,1]
f (M) =1 ,204 1)
o 2 ye (1,2],

B ((r)) -5 (v*) (162

with variance

Var(Y4)

2 2
= [0 o () + / P () ) (16b)
05
2
_ % <3 ln2> (160)
~ 0.08565. (16d)

The first order Sobol indices

o Vary, (Eq, (Y2IKy = £Y))
k A
Var(Y4)

Vary, (Eq, (YA |Ky = £3))

Var(Y4) ’ (17)

and s‘,?z =

will in the following be calculated analytically. We start with s‘;(‘l. The measure
By, (YA|IK; = k7) denotes the expected value of Y4 for a fixed value ki and is obtained
via a density transformation. Setting y* = g(ky) = k} /ko, which is strictly monotonically

decreasing, we get

. Ko aoan |40 9. (1
£ (%) = Jo @ 0M) =i 7 ele®ne] (152)
0 otherwise
kik A ﬁ *]
=1 o Y G[Z’kl (18b)
0 otherwise.

The expectation value E/Q(YAlKl = k¥) and Vary, (E/Q(YAIIQ = kf)) can be derived
from this density via

Ex, (YA|Ky = k}) = q yA dyA ki In2 (19)

P

and
1
Vary, (E/Q(YA|K1 = k’f)) = 5@In2-In 2?2, (20)

which gives s;° ~ 0.4675.
The index 3’1?2 is obtained in the same way: Setting g(k;) = k1 /k3, we get

2
fom =187 e[/* k*] (21)

0 otherwise,

Page 8 of 23
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which gives

2
v 3
By, (YA|Ky = k) = /1 2 yAkgdy?t = R (22)
g 2
and
9 9
Vary, (Ekl(YAU(g - k;‘)) = - —(n 2)2. (23)

Thus, we obtain S?Z & 0.5135. The interaction effects can be extracted via

Varkl,kz (E(YAV(*, k;))

Sﬁbkz = Var(YA) - 311?1 - Sl/ﬁz (24a)
=1-s — 5 (24b)
~ 0.01905, (24c¢)

which leads to total effect indices

s, = sp + s, ~ 04865 (25a)
ST, = o+ Se gy ~ 0.5506. (25b)

This analysis is visualized in Fig. 2. Overall, this analysis shows that varying the parame-
ter ko has a slightly higher impact on the output variance than variations of the parameter
k1, though both contributions are of the same order of magnitude. Furthermore, the inter-
action effect of both parameters is small, and the total effect indices are not much larger
than the respective first order indices.

Sobol sensitivity indices are the same for model version B, provided that kf =k /xé is
sampled from k¥ ~ U (1/x5,2/x4).

2.5 T 5 T . 2.5 T
k=1
2 4t k=2 1 2 L BYAR)=K In@2) -
= k
15 F R el .
£ £ =
1 T2t &1k .
0.5 F ~ 1 0.5 .
0 s . 0 0 . ‘
0 05 1 15 2 25 0 05 1 L5 2 25 0 05 1 1.5 2 25
A
. y *
25 — 25 — 25 : M
E(Y#) =152 k=1 E(YAk3) = 3/(2k3)
2| § 2 b k=2 . 2 | : : i
Var(Y*)=23/6 — (1.5In2)?| _ . P
LAy 1515 15 ) ]
0.5 | 4 05t 0.5 . g
=4
0 : ‘ . 0 0 ! !
0 05 1 1.5 2 0 05 1 15 2 0 05 1 15 2 925
y! y! ki
Fig. 2 Global sensitivity analysis of a simple reversible reaction. Top: Density in the parameter space,
ki, ko ~ U(1,2) (left), Output density for the two extreme k7 values (center), Output density as function of kf
(right). Bottom: Output density obtained by transformation, as described in the text (left), Output density for
the two extreme k3 values (center), Output density as function of k¥ (right).
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The steady state output of model version C reads

c 1
- . (26)
’ e‘kg . g — +1
ki

Again kB is sampled from k8 ~ U (1 /xé, 2 /x‘é). Since a completely analytical treatment
analogous to model version A is difficult here, Sobol indices were calculated via Monte
Carlo simulations, as illustrated in Fig. 3. Interestingly, the Sobol indices of the normalized

model version C are very different from model versions A and B, namely

sg. ~ 0.021 (272)
sk, ~ 0976 (27b)
s, ~ 0.024 (27¢)
s%, ~ 0.980. (27d)

Figure 3 shows that the shape of the density fyc (yc) is different from fy 4 (yA) (bottom
left). Furthermore, as can be seen from the Sobol indices, most of the variance of Y€ is
attributed to variations in the parameter k%, while the parameter k® has only a marginal
influence. Also the interaction effect between both parameters is not very large. These
results are reflected in the Figures on the right hand side: The remaining variance in
Y< when fixing k? at a certain value (top right) is much higher than the respective vari-
ance when fixing /(‘2g (bottom right), and this is true for all possible values of le and /(23.
Moreover, while the mean value EYC‘ KB (YC) does hardly change as a function of kf ~,
IEYC‘ K5 (Y C) highly varies as a function of sz **, resulting in a small first order Sobol index
Slff and a large Sobol index Slff’

Overall, results on this simple toy model illustrate the effect of rescaling and normal-

ization on sensitivity analysis.

25
1.495
2
=2 T
J =
05 1.0884 |
0O 2 4 é 8 10 1‘2 0 2 4 6 8 10 12
kP kP
‘ N ‘ 1.495
3‘
N / N
2 | <
< <
’j‘“ e 1.0884
1 11 1‘2 1.3 14 15 0 05 1 15 2 25
y© k#
Fig. 3 Global sensitivity analysis of a simple reversible reaction. Top: Density in the parameter space,
KB~ U1 /x5, 2/x4) and k5 ~ U(1,2) (left), Output density as function of sample points of k¥ (right). Bottom:
Output density obtained via MC integration (left), Output density as function of sample points of kg (right)
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Case study Il: a model for the MAPK module in PC-12 cell lines

The Mitogen-activated protein kinase (MAPK) cascade is a conserved signaling module
that is part of various signaling pathways. It is a three-tired phosphorylation cascade,
which involves the proteins Raf, MEK and ERK. Raf is activated by Ras upon stimulation,
which then triggers the double phosphorylation of MEK. Phosphorylated MEK in turn
phosphorylates and thereby activates ERK, which also requires double phosphorylation
to become fully active. ERK has a lot of substrates that regulate different cellular fates.
The MAPK pathway is a well investigated signaling module from an experimental and a
modeling point of view [22—-24]. It can show a rich variety of different behaviors such as
oscillations, ultrasensitivity, or bistability and has been investigated in different contexts.

Specificity in the response of the MAPK module to different ligands, which ensures a
reliable processing of signals, is achieved through different courses in ERK activity, which
in turn regulate ERK substrate activation. In particular, the MAPK module involves sev-
eral feedback regulations, which are important to shape ERK response. Most importantly,
ERK interacts with Raf via different mechanisms in a context dependent manner. This
has been exemplified in a study with PC-12 cell lines, in which the MAPK signaling path-
way was investigated upon stimulation with epidermal growth factor (EGF) and neuronal
growth factor (NGF) [14]. PC-12 cells show a transient ERK activity after stimulation with
EGEF, and cells start to proliferate. In contrast, ERK activity is sustained for at least one
hour after stimulation with NGF, and NGF triggers differentiation.

Here we analyze a model that has been calibrated to experimental data from Santos
et al. [14] and involves a context-dependent feedback term from ERK to Raf. Details of
the modeling process are described in [15]. In this model, mass action kinetics is used to
describe the phosphorylation and dephosphorylation reactions. Feedback from ERK to
Raf is described in a non-linear way. Assuming mass conservation for the total amounts
of proteins in the cascade,

RafTQT = Raf + pRaf (283)
MEKtor = MEK + ppMEK (28b)
ERKtor = ERK + pERK + ppERK, (28¢)

allows to eliminate the variables Raf, MEK and ERK. The resulting model has four state
variables, which correspond to pRaf, ppMEK, pERK and ppERK. For our sensitivity anal-
ysis procedure, we focus on the response of the system to stimulation with NGF in the
control case, which allows to simplify the model in [15] accordingly. The model structure
is shown in Fig. 4a.

Model variant A is an unnormalized version, whose state variables correspond to the
actual amounts of these four proteins. The ODE model corresponding to model version A
is shown in Fig. 4b.
ki(+/ =) and /~<i(+/ =), The input #(¢#) mimics
transient Ras activation upon stimulation and is described by a sigmoidally decreasing

Reaction rate constants are denoted by

function. The positive feedback from ERK to Raf is described by a Hill-type function. The
Hill coefficients were set to m = 5 and M = 3.
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pRaf =k (Rafror — pRaf)u(t) — kr pRaf+
ppERK™
kpp——rim——(Rafpor — pRaf
e I)})ERK7"+‘(~1171(R1TOT pRaf)

ppMEK :k;(MEKmq- — ppMEK)pRaf — k3 ppMEK
PERK =kf (ERKror — pERK — ppERK)ppMEK —
— kypERK + (k; — ki ppMEK)pERK
pprRK :l:l’ pERKppMEK — k; ppERK

0 t<0
u(t) = tM 150

L-prgm 12

Fig. 4 MAPK graph and ODE model version A

For this model version we define the outputs

¥ (t,p) = pRaf(t,p) (292)
¥ (t,p) = ppMEK(¢, ) (29b)
¥ (t,p) = ppERK(z, p), (29¢)

where p denotes the vector of parameters of the system.

This model was calibrated to Western blot data, which provide light intensities that
are scaled to the signal of the respective total protein. Hence the measured signals are
proportional to the fraction of phosphorylated protein concentrations relative to the total

protein amounts,

pRaf
X1 =0 -
! ' Rafror
pPpPMEK
X =02 ————
MEKToT
pERK
=3 ————
3 3 ERKtoT
pPPERK
X4 =04 ————.
ERKtoT

The factors of proportionality «; account for differences in binding affinities of the anti-
bodies and variations in membranes. Since we only have measurements for pRaf, ppMEK
and ppERK, but not for the intermediate product pERK, we set without loss of generality
a3 = 1. The transformed system reads

xm
X1 = ki (g —x)u—kTx) + k 74(01 — X1)
1 1 (1 1 1%1 prff’—l-(oq)m 1 1
. + 1 —
Xy = ky (02 — x2)—x1 — k; %2
25}

. 1 _1 _ 1
X3 = k;“(l — X3 — —X4)—%2 + k —x4 — k3 x3 — kj —X3%2
(073 (%) (o7} o)

. g —
X4 = /(I OTxng — k4 X4.
2
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Compared to model version A, also some of the rate constants had to be rescaled, in

particular,
k;_ = l;;—RafTOT (31a)
g
= —= 31b
g ERKtoT (31b)
ki = ki MEKror (31c)
k = kI MEKror. (31d)

This defines model B, whose variables correspond to quantities proportional to the
fractions of phosphorylated proteins. Hence the output variables of model B are

y2(t,p) = x1(t,p) (322)
y8(t,p) = x2(t,p) (32b)
y8(t,p) = xa(t,p), (32¢)

where p denotes the vector of rescaled parameters, obtained from p.

The scaling factors «; are unknown and can be very different for different proteins and
different replicates. In order to get rid of these factors and to enable a comparison between
different experimental replicates, data and model are normalized to a reference experi-
ment. Here we adapted our choice of reference experiment to the data in Santos et al.
[14], where the signals at £ = 5 min were set to one individually for each protein. Hence
measurements were compared to the third set of model outputs

e Hep)

yp) = yB(@* = 5min, p) .
P ()

¥y (t,p) = J’g(t* = 5min, p) .
c o dBep)

o) = = sminp) (33c)

which define model C. The model parameters, which we use here for our analysis,
correspond to the MAP estimate in [15] and are listed in Table 1.

Case study llI: local sensitivity analysis

Figure 5 shows the normalized local sensitivity coefficients s;;(¢) for model variants A
and B, which have been calculated via the direct differential method, as explained in
the Methods section. Since the system is monotone (i.e. all feedback circuits are pos-
itive and the system has a monotone flow [25]) and hence the courses are similar for
all three components, the results are shown for ppERK only. The phosphorylation rates
kf, k; , k; and k;r all have a positive effect, which is transient in case of kfr and shows a
transient behavior, followed by a second increase towards ¢ = 60 min for k;, k3, k[[. This
reflects the fact that the system shows a quasi-bistable behavior, meaning that the system
is monostable but able to maintain a state different from zero for a very long time upon a
transient signal and returns to its steady state at zero only at a later time point (for more

Table 1 MAP parameter values used for the sensitivity analysis

0 \ong Iog/<2+ \ogk;r Iogkjlr logki”  logk; logky logk,  logkgs logg K
OMAP 57324 73475 78110 23365 -00865 62055 68132 -04295 -59037 -58563 5.6202
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Fig. 5 Local sensitivity analysis for model variants A and B. Normalized local sensitivity coefficients for model
output y3(t) of model variants A and B

details on this phenomenon see [15]). Similarly, all dephosphorylation rates have nega-
tive sensitivity coefficients, which become most influential at later time points, since they
inversely regulate the duration of sustained response. As expected, the rate constant kg,
and the threshold parameter g in the non-linear feedback term have positive and negative
influences, respectively, that are increasing over time.

Overall, the results of this local sensitivity analysis are plausible given the model struc-
ture. The results in particular show that the early transient behavior of the cascade is
mainly determined by the phosphorylation rates. Moreover, the time point at which tra-
jectories return to their steady state is very sensitive to changes in most parameters, k;r
and K being the only exceptions.

Figure 6 shows respective results for model version C with * = 5 min. Indeed, the
courses are equivalent to those of model versions A and B, but shifted by —s(¢*). This shift
causes sign changes for all sensitivity coefficients. For example, in the first picture of the
second row in Fig. 6, where i = 3 and j = 5, referring to p; = k{, s;j(t) > 0fort < t* and
s;.j(t) < 0 for ¢t > ¢*. This means that the relative change in y(¢, p) when varying p around
p* is larger than the relative change in the reference value y(¢*, p) for t < t*, and vice
versa for ¢ > t*. This generally renders the interpretation of the sensitivity coefficients
more difficult. In particular, it is not possible to extract the effect on the unnormalized
concentrations from these courses without additionally taking the value s;;(t*) itself into
account.

Case study lI: Variance-based global sensitivity analysis

Figure 7 shows the results of Sobol’s sensitivity analysis for model variants A and B. We
have chosen P; ~ U[0.1p}, 10p7]. First order indices are depicted in the first row, total
effect indices are shown in the second row, for pRaf (left), ppMEK (center) and ppERK
(right). It can be seen that first order indices decrease over time for all variables, while
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Fig. 6 Local sensitivity analysis for model variant C. Normalized local sensitivity coefficients for model output
y3(t) of model variant C

total effect indices increase at the same time, indicating that interaction effects between
parameters gain importance over the duration of the signal response.

Looking at the first order indices, the number of influential factors increases from Raf
to MEK, which is naturally expected, since the signal mainly propagates in this direction.
Consequently, pRaf is mainly influenced by the rate constants of its own dephosphoryla-
tion, followed by it’s phosphorylation rate &}, which is more dominant in the beginning
of the response, where it determines the speed of Raf activation. Raf activity is further-
more weakly dependent on the feedback strength kg,. In addition, the phosphorylation
and dephosphorylation rates of MEK come into play in the first order Sobol sensitivities
of MEK. Finally, the course of ppERK is influenced by a mixture of rate constants of Raf,
MEK and ERK phosphorylation and dephosphorylation.

The values of the sums of total effect indices, which are shown in the second row,
are much larger than the first order indices, indicating that interaction effects have
an important impact on the overall variance of the model outputs. Compared to the
first order effects, some new parameters appear, such as the parameter K, which
had little effect as first order indices. This indicates that K influences the model
output mainly via interactions with other parameters. While Raf is still mainly influ-
enced by its dephosphorylation rate, the number of influential parameters increases
from Raf to MEK, and ERK activity is regulated by a mixture of various total effect
indices.

Since pERK is a hidden variable that is not observed, its phosphorylation and dephos-
phorylation rates k;r and k3 have only a marginal influence on model outputs. This
is probably also due to the fact that pERK is an intermediate product between inac-
tive non-phosphorylated and fully active, double phosphorylated ERK, which often has a
buffering role and makes the overall system less sensitive to changes in e.g. total protein
concentrations.
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Fig. 7 Sobol sensitivity analysis applied to model versions A and B of the MAPK module. First row: First order
indices, Second row: total effect indices

As outlined above, Sobol sensitivity indices are generally different for model versions B
and C. The analysis results for model version C with reference time point t* = 5 min are
shown in Fig. 8. As expected, the picture is indeed completely different from Fig. 7, show-
ing that normalization of the variables has in fact a large impact on sensitivity analysis.
Most strikingly, normalization seems to cause large interaction effects between almost all
parameters in this case study. Furthermore, all three observables are now influenced by
many more parameters than before.

It can further be seen that the first order indices rapidly decrease over time for all
three observables, and are nearly zero at t = 60 min after stimulation. The first order
sensitivities for Raf and MEK are almost indistinguishable, which probably comes from
the fact that both components also have very similar time courses after normalization.
Similar to model version A, all three components are highly dominated by the dephos-
phorylation rate of Raf. Different from model version A, the feedback parameters kg, g,
M and K become more prominent in the course of the first order indices especially for
Raf and MEK. This is true for the first order and the total effect indices, and presum-
ably comes from the fact that it regulates to a certain extend the time and the height of
the maxima of all components, and therefore causes variances in the experiment used for
normalization. The first order indices are all rather small for ERK over the entire time
course.

The sum of total order effects are much larger than in model variant A for all time
points and all components, showing that normalization indeed increases interaction
effects among parameters. Moreover, all three components show a well balanced mixture
of total order effects of all model parameters, suggesting that all normalized components
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Fig. 8 Sobol sensitivity analysis applied to the MAPK model version C. First row: First order indices, Second
row: total effect indices

are highly interconnected. Interpretation of Sobol indices of model version C and their

meaning for the biological system is generally difficult.

Conclusions

We have demonstrated that normalized sensitivity coefficients and Sobol indices are
invariant under simple rescaling of model variables and parameters. This is, however,
different for a normalization to a reference experiment, whose value depends itself
on model parameters. Such a normalization may change the results of both local and
global sensitivity analysis completely. This has to be taken into account when working
with relative data that are normalized to a reference experiment and models that are
normalized in the same way to reproduce these relative data. Interpretation of the sen-
sitivity coefficients or Sobol indices can be very difficult in this case. In particular, it is
generally not possible to extract any information about respective changes of the unnor-
malized model trajectories. A sensitivity coefficient near zero, for example, just indicates
that the relative changes of the reference experiment value and the respective consid-
ered model output are of the same order of magnitude. Thus, parameters that have a
large impact on model outputs and appear to be important in an unnormalized model
version, might have small sensitivity values in a normalized model version, and vice
versa.

Dealing with relative data and corresponding normalized models generally poses a chal-
lenge from the modeling point of view. As shown in this work, it renders the interpretation
of sensitivity analysis and its meaning for the biological system a difficult task. Further-
more, related to this issue, it complicates model inference and in particular parameter

estimation. Parameter estimation is often formulated as an optimization problem with
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an objective function that comprises a comparison of the relative experimental data with
the respective model predictions. Evaluation of this objective function requires two sim-
ulations for one experimental value, the reference experiment value, which is used for
normalization, and the actual experiment. Hence although the objective function is inde-
pendent of any scaling factors, factors of proportionality o have to be chosen for the
individual simulations, which often causes numerical problems when not chosen prop-
erly. We also encountered such numerical instabilities in our sensitivity analyses, which
requires some care in the choice of these factors.

In conclusion, the calibration and analysis of normalized models is challenging, and
proper normalization methods and their impact on the analysis results remain an issue
for further studies.

Methods

Local sensitivity analysis and the direct differential method

Local sensitivity analysis investigates the influence of a parameter p on a model out-
put y;(¢,p) around a reference parameter set p*. Sensitivity coefficients are formally
defined as first-order partial derivatives of the model output y;(¢, p) with respect to the

parameter pj,

3y:i(t, p)

i () %,

. (34)
p=p*

If not analytically available, S;;(#) can in the simplest case be approximated via finite

differences, i.e.

yi(t, p* + Apy) — yi(t, p*)

Sj(t) ~ Ay
]

(35)

with Ap; being a vector with zero entries except for component p;. This approximation
works quite well in many settings, but robustness should be tested via varying the step size
Apj. The direct differential method instead solves a differential equation for the sensitivity

coefficients. Therefore, we consider the time evolution of S;;(¢),

AO) _ Kl <8yi(t,p)> (362)
at at \ dp
= op; ( 9t ) Yi = Xi (36b)
d
= Tﬁ(x@’ t)’prt) (36C)
Dij
Ui, p,t) |~ filx,p, ) dxg (L, p)
= " 4 (36d)
Ipj ,; dxx dpj
Wit pt) < fi(xp, t) dxx (8, p)
= ——" 4 (36€)
8]91' kX:; 8xk apj
— 73]?(%17; 2 + Z/ijk/. (36f)
opj

k=1
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This can be summarized as
38y, M M A f

a7 i) B 9xp 9 S1j
35 f fh ofs dfy Sy
ot apj dx; Oxy " Ox J
=TT T (37)
S fn W fu S,
ot opj dx1 Oxy " Oxy n

or, in a more compact form,

Sj=f, +JS; S,,(O):Mi:L...,n. (38)

dp;j
This differential equation system for S; can be solved numerically. It involves the Jaco-
bian matrix J; of the system, which has to be defined and implemented. The direct
differential method does not rely on the choice of an appropriate Ap, but can be very time

consuming especially for larger systems.

Variance-based sensitivity analysis

The main idea of variance-based sensitivity analysis methods is to decompose the vari-
ance of a model outcome according to the input factors. Variance-based methods are
global methods, since they exploit the impact of parameters within a whole range of val-
ues. Moreover, in contrast to local sensitivity factors, they allow for the investigation of
interaction effects between groups of parameters. Sobol indices are sensitivity measures
that are based on average partial variances.

To simplify notation, we adapt in the following to formulas derived in [16, 17], where
Y denotes a particular scalar model output (i.e. an output variable at a particular time
point) and X is the set of model parameters. Similar to a Bayesian framework, X € R” are
random variables, and Y is considered to be a function of these input parameters,

Y =f(X1,..., Xn), (39)

with expectation value E(Y) and variance Var(Y). Importantly, all X; are assumed to be
independent for the following procedure, and hence can be drawn independently from
their marginal distributions.

In order to investigate the contribution of each factor X; to the total variance Var(Y),
we average over the conditional variances, which is the resulting variance of Y when the
factor X; is fixed to a value x7,

Ex,(Var~y,(Y|X; = x})). (40)

Here, the expectation is taken with respect to the values that X; can take, and
Varx, (Y|X; = x7) is the conditional variance of Y after fixing X; to a value x}. According
to the law of total variance, Var(Y) can be decomposed as

Var(Y) = Ex, (Var~x, (Y|X; = 7)) + Vary,(E~x, (Y|X; = 7). (41)

Figure 9 illustrates this decomposition. The two figures on top correspond to the den-
sity plots on the right hand sides of Figs. 2 and 3. In Fig. 2 the densities fy K and fya K
are analytically accessible, as described in the text, while these quantities are analyzed via
Monte Carlo sampling, as illustrated in Fig. 3. The summary statistics from these condi-
tional densities that are exploited in the Sobol analysis are presented in the figures on the
bottom in Fig. 9. Here, the terms Var~y; (Y|X; = ) and E~x, (Y|X; = x}) are the variance
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and expectation value of ¥ within a slice X; = ], and Var(Y) is given as the expectation
of variances and the variance of expectations over all slices. This figure shows that if ¥
and X; are highly correlated, then the first term in Eq. (41) is small, and the second term
is large. Hence it is reasonable to