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Abstract

In this article computation and comparison of causality measures which are used in
determination of brain connectivity patterns is investigated. Main analyzed examples
included published computation and comparisons of Directed Transfer Function - DTF
and Partial Directed Coherence - PDC. It proved that serious methodology mistakes
were involved in measure computations and comparisons. It is shown that the
neighborhood of zero is of accented importance in such evaluations and that the issues
of semantic stability have to be treated with more attention. Published results on the
relationship of these two important measures are partly unstable with small changes of
zero threshold and pictures of involved brain structures deduced from the cited articles
have to be corrected. Analysis of the operators involved in evaluation and comparisons
is given with suggestions for their improvement and complementary additional actions.

Keywords: Causality measures, Brain connectivity patterns, Connectivity measure
comparisons, Direct transfer function, Partial directed coherence

Background
This article is intended to researchers involved in brain connectivity mapping or using
them. Number of sensitive issues in computations of measure and measure comparisons
are discussed, illustrating actual problems with the examples published in the articles of
authors with highest authority in the field.
After success of Granger causality measure, the growing number of different causal-

ity measures have been developed aiming to model brain connectivity patterns. In this
article we are investigating methodology of computation and comparisons of different
causality measures, which was the subject of a number of articles devoted to it (e.g. [1-5]).
Different measures will induce different brain structural models corresponding to the
same neurological data. Comparison of different measures is necessary in order to make
precise distinctions among them, which would determine: what and how exactly each
of the considered measures is measuring, exact relationship between different measures
in specific contexts, when, how and why they coincide or differ, and finally, when and
under what conditions they are applicable and when computation of alternative measures
can corroborate established connectivity patterns or discern subtle relations. Then, the
ways individual computations and comparisons are done becomes important. Complex-
ity of these models, till recently involved < 24 electrodes, now with over 28 electrodes
in contemporary EEG (electro encephalography) and MEG (magneto encephalography),

© 2013 Jovanović et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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consequently- operating with 216 graph links; complexity is expected to rise, towards the
number of neurons > 236, with 2150 synapses; increasing temporal resolution to 216 Hz,
thus approaching 2180 states in 4 dimensional graphs - corresponding to one hour time of
brain activity. Connectivity graph measures which are properly defined, computed, com-
pared and organized, forming firm grounds for the forthcoming complexity growth would
be needed.
We briefly present fundamental concepts and causality measures which became rather

dominant in brain connectivity pattern analysis. Our argumentation is common math-
ematical, hence, not statistically verified. We do not present statistically corroborated
conclusions. We are not discussing statistical open issues, especially not how the signifi-
cance thresholds are established, but we are interested in the properties these quantities
have to satisfy or respect. That means: in Mathematics one counterexample is usu-
ally sufficient to show that something is going wrong, while all examples, if positive,
are insufficient to prove conclusion. Analyzing computations and comparisons of dif-
ferent measures, we discovered that certain moments of performed comparisons and
measure evaluations deserve more attention. In our considerations we separated two
qualities usually treated together: connectivity from the degrees of connectedness, the
former essentially much more important issue, thus obtaining much clearer situation
in simplified diagrams. We use examples of published measure comparisons ([1-5] and
other sources) to depict subtle aspects of computation and comparisons which gener-
ally need increased scrutiny and further elaboration. In order to illustrate those aspects
we selected some measures which are broadly applied and somewhere compared. Espe-
cially important are the studies and achievements of Sameshima and his collaborators.
We use examples of published comparisons of Directed Transfer Function - DTF and Par-
tial Directed Coherence - PDC as particularly important, since numerous research teams
use extensively these measures to establish brain connectivity maps. It is shown that the
published results on the relationship of these two measures are partly unstable with small
changes of zero thresholds (as present in a number of related published experiments),
and that pictures of brain structures deduced from the cited articles need to be corrected
and extended. It is shown that the neighborhood of zero is of accented importance in
such evaluations and that unification of values below zero threshold is necessary as the
first step in computation and comparison evaluation. Harmonization of thresholds corre-
sponding to measures involved in comparisons is an open issue requiring mathematically
reasonable solutions. Computational stability is a general demand everywhere. When we
face computational instability, if we deal withmodels of the real world, it immediately gen-
erates semantic instability. In this context, if connectivity graphs essentially change when
computational differences of arguments are within computational zero, then it is reflected
semantically as proportionally unstable brain connectivity maps; this is not acceptable in
any interpretation of experimental data.
Analysis of the operators involved in the measure computation and comparison proved

that the spectral maximum selected as the representative invariant for both DTF and
PDC before their comparison is not justified and might lead to not well founded con-
clusions. Suggestions for the updates of used simplification operators in computation
of measures and for complementary comparisons are given. Renowned leading authors
refer to “proper frequency domain counterparts to Granger causality”. Inspired by claims
of Sameshima and collaborators (e.g. [3]), we use Geweke fundamental relation between
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temporal and frequency domain measures to define temporal/frequency-domain coun-
terparts generally in a proper way.
Investigation of PDC and DTF on synthetic (linear) models (asserting essential supe-

riority of the former) is used in published papers as a basis in comparison of these two
measures on the real neurological data. Following original methodology, on published
data, we show that the deduced brain connectivity structures in this case of utmost
importance are essentially unstable and could even be less different than presented and
in the case of synthetic models, questioning certain steps in the computation and com-
parison procedures. On the other hand, following strict statistical consistency, without
justified harmonization the opposite can take place and compared measure might differ
to unreasonable degree.We conclude with remarks and suggestions which would improve
computational representation and comparison quality and include dynamic aspects of
measure comparisons. Here elaborated issues were of interest to us while investigating
hardly detectable - weak connectivity. This article was partly available, mostly on the
conferences in recent few years.

Causality measures and their comparison
Granger’s method [6-8] has been in the focus of extensive research in neuroscience,
resulting in a number of method adaptations and generalizations, ever inspiring further
developments and innovations specialized for specific needs. In this section we first list
briefly some of the major developments which are in broad use in experimental practice,
as they are commonly presented. In the sequel, we introduce Granger - Geweke counter-
part measure couples, correcting Bacala - Sameshima [3] causality measure counterpart
determination; then we discuss certain details related to the computation and compar-
isons ofmeasures and finally we discuss the role of small sets/objects inmeasure estimates
and comparisons. The later would provide background for the exemplary critical analysis
of comparisons of key connectivity measures with corrected methodology on published
data, in the following section.

Method summery

More details on the method are available in the cited and other literature. A large
number of scientific papers on brain area connectivity are published using causality con-
cepts expressed as connectivity measures. Obviously, the questions of interdependence
and computability of the used measures, together with some other issues are of basic
importance, since directly influencing practical conclusions.
If we have three variables x(t), w(t) and y(t), if the value of x(t + 1) can be determined

better using past values of all the three, rather than using only x and w, then it is said that
the variable y Granger causes x, or G-causes x. Here w is a parametric variable or a set of
variables.
In the bivariate case, Granger causality is expressed using linear autoregressive model as

x(t) =
p∑

j=1
a11(j)x(t − j) +

p∑
j=1

a12(j)y(t − j) + E1(t)

y(t) =
p∑

j=1
a21(j)x(t − j) +

p∑
j=1

a22(j)y(t − j) + E2(t),

(1)
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where p is the order of linear model and Ei are the prediction errors. The model consists
of the linear recursive and the stochastic component. Thus, if coefficients of y in the first
equation of (1) are not all zero, we say that y G-causes x; similarly for the variable y. The
multivariate formulation was exploited more by Granger followers, Geweke [9,10] and
others (e.g. [11,12]). Stated in the vector form as

x(t) =
p∑

j=1
A(j)x(t − j) + E(t), (2)

where x(t) = (x1(t), . . . , xn(t)) is a vector of variables, A(j), j = 1, . . . , p, is the coefficient
matrix defining variable contributions at step t − j and E(t) is the vector of prediction
errors.
Geweke [9] early realized importance of spectral form of G-causality, which obtained

from (2) by Fourier transform, reads as follows:

A(λ)x(λ) = E(λ), (3)

where

A(λ) = −
p∑

j=0
A(j)e−2iπλj, (4)

with A(0) = −I and which, solved by x gives

x(λ) = A−1(λ)E(λ) = H(λ)E(λ), (5)

where H is a transfer matrix of the system.
In the bivariate case or with two blocks of variables, G-causality measure from channel

j to i at frequency λ is defined as

I2j→i = |Hij(λ)|2 = |aij(λ)|2
|A(λ)|2 . (6)

Geweke [9] elaborated conditional causality and defined a number of causality measures;
we mention here his linear causality of y to x defined as

Fy→x = ln(|�1|/|�2|), (7)

where �1 = var(ε1), �2 = var(E1(t)), with similar expressions for vector variables.
In frequency domain he introduced the measure of linear causality at a given frequency.

Stated for two variables or two blocks of variables:

fy→x(λ) = ln(|Sxx(λ)| · |Hxx(λ)�2(λ)H∗
xx(λ)|−1). (8)

Here, H∗
xx(λ) is the Hermitian transpose of Hxx(λ), || denotes matrix determinant and

Sxx(λ) is the upper left block of the spectral density matrix S(λ)which is usually written as

S(λ) =
[
Sxx(λ) S∗

yx(λ)

Syx(λ) Syy(λ)

]
= H(λ)�2(λ)H∗(λ), H(λ) =

[
Hxx(λ) Hxy(λ)

Hyx(λ) Hyy(λ)

]
.

As we have noted earlier, both x and y can be vectors of variables.
Later, also in frequency domain, Kaminski and Blinowska [11] introduced an adapta-

tion of Granger’s causality measure to m variables, which they called Directed Transfer
Function (DTF), with formula

DTFij(λ) = |Hij(λ)|√∑n
k=1 |Hik|2

, (9)
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measuring causality from j to i at frequency λ; before, they use the same expression as
in (6) for the non-normalized DTF definition. Though extensively claimed by its authors
to be superior over Granger’s measure in causality application to the brain connec-
tivity problems, after accumulation of some experience with DTF, Kaminski et al [1]
proposed additional connectivity measure, which should be used together with DTF, sup-
posedly measuring direct connectivity between nodes i and j (DC) in frequency domain,
defined by

DCij(λ) = σjjHij(λ)√∑n
k=1 σ 2

kk|Hik(λ)|2
, (10)

where σkl (k, l = 1, . . . , n) are components of the covariance matrix�2. This measure was
earlier considered by Sameshima and Baccala, e.g. [2] and other authors.
Baccala and Sameshima [3] introduced a normalized measure called Partial Directed

Coherence (PDC), measuring direct influence of channel j to channel i at frequency λ,
with definition

PDCij(λ) = πij(λ) = Aij(λ)√
a∗
j (λ)aj(λ)

, (11)

where aj is the j-th column of A(λ) and a∗
j is the Hermitian transpose of aj.

Among certain further generalizations, we mention here iPDCij(λ), the information
PDC, intended to measure information flow between nodes j and i (in the sense of Infor-
mation theory) by Sameshima and collaborators [13], which is obtained from (11) with
the expansion by a factor

iPDCij(λ) = Aij(λ)√
σii a∗

j (λ)�−1
w aj(λ)

, (12)

where �w = E(w(n)wT (n)) is a positive definite covariance matrix of the so called zero
mean wide stationary process w(n).
With the same intention for DTF, they define information DTF as following

iDTFij(λ) = Hij(λ)√
ρii h∗

j (λ)�−1
w hj(λ)

, (13)

where ρjj is the variance of the so called partialized innovation process ζ(n) defined by
ζ(n) = wj(n) −E(wj(n) | {wl(n) : l �= j}). Obviously, as generalizations they have respec-
tively PDC and DTF as their special cases. They have a theorem with nine equivalent
conditions characterizing absence of connectivity between two nodes j and i, of which we
copy conditions 4 to 6:

(0) nodes j and i are not connected

(a) iPDCij(λ) = 0, ∀λ ∈[−π ,π)

(b) iDTFij(λ) = 0, ∀λ ∈[−π ,π)

(c) fy→x(λ) = 0, ∀λ ∈[−π ,π).

(14)

This theorem is valid for two variable case. For general case, the authors announce corre-
sponding results to be published soon. Otherwise, we note that all important conclusions
in their earlier papers, especially [3] are affirmed again.
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Aspects related to Geweke theory, computation and comparison of measures

Let us first mention improvements of Geweke causality measures, proposed in [4], which
is based on matrix partitioning. In this way Chen, Bressler and Ding obtained correc-
tions of Geweke conditional measures which did not suffer of deficits which the original
Geweke measures had - occasional negative values, smoothing peaks which were believed
to be artifacts.
Above introduced measures are functions of time, or are expressed for individual fre-

quency, when connectivity analysis for specific frequency or frequency bands is desirable.
Geweke derived the fundamental agreement of the two approaches:

Fy→x = 1
2π

∫ +∞

−∞
fy→x(λ)dλ. (15)

The relation (15) is common in Mathematics. It holds for probability measures and their
densities, more generally it is common in distributions.We can use it as a definition of the
counterpart measure when only one of the measures is defined. For a couple of measures
F〈x,y〉 and f〈x,y〉, respectively in time and frequency domain, with parameter vector 〈x, y〉
we say that they are G-counterparts or G-inverse (G for Geweke) over domain D ⊆ R (R
is the set of real numbers), if they satisfy

F〈x,y〉 = c
∫
D
f〈x,y〉(λ)dλ = c

∫
R

χD(λ)f〈x,y〉(λ)dλ, (16)

where χD is the characteristic function of the set D.
This is slightly more general than (15), omitting D when D = R. Thus, if one of

the counterparts is given, the other can be calculated using (16). Specifically, substitut-
ing DTFij and PDCij for f in (15) and (16), we can obtain their proper time domain
counterparts, the G-inverses, which we designate by DTFij and PDCij. This would open
discordance with the claim of Baccala and Sameshima ([3]) that PDC is the proper coun-
terpart of Granger causality in frequency domain. The G-inverse can be defined more
generally than relative the aggregation operator - integral form present in (16), thus
realizing G-inverse relative arbitrary aggregation operator.
In this way there are different measures related to the initial Granger-Geweke for-

mulations and variants. They are defined using different approaches and aspects, yet
sharing the model and core of the semantics, which makes them comparable. The use of
the above introduced measures in different neurological applications is broad. There are
other variants and developments.
Different measures measure different properties. Some normalization and control of

involved parameters are often necessary before comparison of different measures. More-
over, comparison of measures is also ameasurement involving somemeasures and usually
it can be accomplished satisfactorily in a non unique way. Some relevant issues involved
in measure comparison we briefly discuss here.
When comparing measures, we can estimate their difference at a point or on a subset

of a common domain, e.g. in case of well normalized measures, as important measure
compatibility estimation we have

mc(μ, ν, ξ) = |μ(ξ) − ν(ξ)|
mc∗(μ, ν,D) =

∫
D

|μ(ξ) − ν(ξ)|dξ .
(17)
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Result of measure comparison can be regarded as a kind of similarity degree (corre-
sponding to the metrics in spaces of measures). When measuring similarity of measures,
often other operators are involved e.g. normalizers, simplifiers, projections or grading,
etc. We define similarity of measures somewhat more generally, in order to cover con-
ceptually more complex approaches to measure comparison and similarity investigations.
For measure μ and ν, define their mutual similarity degree by a formula fitting into the
scheme

Sim(μ, ν, 〈i, j〉,D) = P(sim(N1(μ, 〈i, j〉,D),N2(ν, 〈i, j〉,D))), (18)

where N1 and N2 are prior normalization operators, sim is a basic similarity, P is some
external operator (e.g. posterior grading), 〈i, j〉 is the graph link from i to j and D is the
parameter-set for N1 and N2. This form of comparison enables the estimation of the
degree of similarity present in rather general circumstances. As usual it can be normal-
ized. Clearly mc and mc∗ measures are the special case of (18). Choosing the operators
properly would contribute to the quality of estimation and vice versa, choosing them
with insufficient care may result in reduced estimation quality and fatefulness. Compu-
tational stability, implying basic semantic stability, verified by closer inspection of Sim
dependence on involved operators is a necessary requirement in this task, needing appro-
priate approval before inference of further conclusions. Consequently, when necessary,
multiple/complementary measure comparisons should be performed.

Preservation/coherence properties

Measures are often demanded to fulfill basic preservation properties, like monotony, car-
dinal monotony and translation invariance (or some approximation of it). It is important
to note that measure has to satisfy substructure invariance, i.e. restriction of a measure
to a substructure would not change its range; consequently, measure values on the inter-
section of substructures remains coherent. Further, conclusions drawn from measure
computation and comparisons/similarity estimates should be invariant to some degree of
fluctuations of the operators P, sim,Nk - this is second requirement of semantic stability.
These conditions should secure measure stability in repeated and similar experiments.
Finally, comparison of measures should not violate desirable properties. Thus, small must
remain small and similar has to remain similar in the procedures performing measure
comparisons (literally we cannot allow that: small difference of arguments (within numer-
ical zero) in one case is exhibited as small - zero, and in the other as non-zero. Similarly, we
cannot allow that small difference of arguments in one simple computation of the pred-
icate connected results in the values Yes (i.e. connected), while in the next computation
it results in No, i.e. not connected. Structural properties of measures are usually deter-
mined on small sets/objects - in the zero neighborhoods, which is why the measure on
small objects (zero ideal) is of distinguished importance. This is why beside above men-
tioned conditions/properties we list the zero-axioms, ZAx, either for a single considered
measure or for a set of compared measures: Zero axioms (ZAx):

Z0 substructure partitioning invariance (measure on a restriction to a substructure
remains coherent);

Z1 fluctuations of operators involved in measure computation and comparison need be
tolerant (continuity);
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Z2 in similar circumstances numeric zero (significance threshold) should be stable
quantity (to allow comparability of results);

Z3 comparison of a set of measures needs prior unification (argumentation necessary) of
their zero thresholds (for otherwise, what is zero for one is not zero for other
measures; consequently, the measure values which are identical for one measure, are
discerned as different by other measures; that must cause problems);

Z4 in similar circumstances grading should be stable quantity;
Z5 measure values which are different by � numeric-zero should remain identical in any

posterior computation/grading if applied (this is in accordance with the prior
congruence on the ideal of zero measure sets);

Z6 values in any posterior computation/grading (if applied) should differ by no less than
numeric-zero and grades should be of unified diameter; in this way values in
posterior grading range are harmonics of numeric-zero;

Z7 final grading as a (small) finite projection of normalized range [ 0, 1] needs some
conceptual harmonization with the standard additivity of measures; this step should
involve fuzzification;

Z8 grading should be acceptable by various aspects present in the interpretation of
related experimental practice (that means that the picture obtained using a
projection/grading of [ 0, 1] range should not semantically be distant from the original
picture - based on the [ 0, 1] range without grading, e.g. a sort of continuous grading).

Obviously, this list is not exhaustive and not fixed. It can be improved in different ways
and the statements could be reformulated. Our intention is not to introduce further
formalism in the discussed context. Certain basic mathematical principles have to be
respected and we pay attention to this fact. In such way we should be able to maintain
basic consistency; experimental results from repeated or similar experiments remain rea-
sonably comparable and their comparisons reasonably stable. Measure computation and
comparisons are often complex tasks consisting of a sequence of individual steps, some
of which usually do not commute, demanding care and justification.

Computations and comparisons
In this section we focus our attention to the final result of the connectivity measure
computations - the brain connectivity directed graphs or networks, as the main model
representing brain connectivity patterns. This is mainly done with concrete data, con-
sequences are slightly more general. Due to various technological and methodological
limitations, contemporary mapping of brain activity using electroencephalography and
magneto encephalography operates with a few hundreds of brain signals, thus, close to
mega links. No doubt, this resolution will be continuously increasing, down to a few mil-
limeters per electrode and better, all in 3D, increasing proportionally the cardinality of
connectivity graphs, as discussed earlier. In a graph we define orbits of individual nodes:
the k-th orbit of a node a will consist of nodes whose distance via a directed path from
node a is k (separate for both in/out paths). We assume that the connectivity graphs
exhibit direct connections of processes which are directed. This was ambition of all sci-
entists who proposed the connectivity measures in brain analysis; this is expectation of all
scientists interpreting their experiments with computation of the connectivity measures.
We rather briefly analyze some important published examples of connectivity mea-

sure computations and measure comparisons, focusing attention to the concepts and
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remarks from previous section. These measures are commonly used to determine brain
connectivity patterns. We will exhibit erroneous or misleading conclusions in modeling
of brain connectivity which is of crucial importance for experimental scientists in this
area. We offer some solutions to overcome the encountered problems, aware that our
argumentation could well be expanded.

Example 1. Let us first mention that a number of early articles noted the insuffi-
ciency of simple Granger - two variable model applied to brain connectivity problem,
with potentially wrong connectivity conclusions in case where multiple variables were
related, leading to the implementation of more complex modeling, sharing the same or
similar formulation to the original. The simple corrections of original Geweke measures,
Geweke [9,10], by Chen et al [4] (both domain causality measures) were proved to be a
quality resolving tool for both simulated data and neurological networks, with low zero
threshold - significance level (in the range 0.01 to 0.02). The corrected form is quite com-
patible with original on large portions of measure domain in the sense of simple measure
comparison (comparison form:mc∗).

Example 2. The DTF and PDC measures are extensively used to model brain connec-
tivity. This issue is of increasing importance. Critical comparison of results of these two
measures was initiated long ago and it still needs careful investigation, since errors in
conclusions could be misleading and costly.

In [1], there is a detailed study of DTF and statistical significance assessment, evaluat-
ing significance level related zero thresholds at 100 frequencies at 0.0045 for normalized
DTF and 0.068 for the non normalized DTF. There are numerous studies related to brain
connectivity problems exploiting DTF e.g. [14], omitting references to other connectivity
measures and avoiding presentations of system structures on which DTF performs poorly
(absence of transitive nodes).

Example 3. Detailed survey of PDC properties is presented by Schelter et al in [5], con-
firming its very good agreement with direct structural connectivity for simulated linear 5
argument model and a nonlinear model; here calculated statistic significance level varies
from 0.01 for linear model system of order p = 2, to 0.06 for order p = 50, increasing
to 0.12 for model order p = 200. Fitting the Var[200] model to data generated by a Var[4]
model, some variability was introduced in PDC. With significance threshold at slightly
nonconstant nearly 0.1, connectivity calculation matching well the expected connectivity
pattern.
However, a number of links with local maxima (frequency) exceeding significance

threshold, even by a factor of 2 were ignored as insignificant, without proper argumen-
tation (links in Figure 3 in [5] designated as |π3 ← 1|, |π4 ← 1|, |π5 ← 1|, |π3 ← 2|,
|π4 ← 2|, |π5 ← 2|, |π1 ← 2|, |π1 ← 3|, |π1 ← 4|, |π3 ← 4|, |π5 ← 4|, |π2 ← 5|
are all with small amount of energy above significance threshold, with small bursts clearly
above threshold).

Example 4. We will use the same source [5] as in the previous example. The applica-
tion: connectivity pattern modeling tremor, involves Left EEG, Right EEG, Left EMG and
Right EMG. With significance threshold at approximately 0.1, the obtained connectivity
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pattern is consistent with known facts, extracting the connectivity links very well from
the non-connected nodes. However, similar to the above case, the PDC diagrams cor-
responding to certain links (Left EMG ← Left EEG, Right EMG ← Left EMG, Left
EEG ← Right EMG), all have small peaks exceeding slightly the threshold level. Again,
no numeric criteria was offered to eliminate those links which should be affirmed by
frequency maximum criterium which is applied in this modeling. These examples are
related to the emerging conecpt of weak connectivity, the connectivity involving infor-
mation transfer which is hardly discernible or even embedded in the noise energy level,
examples of which were treated in certain special cases (partly published in [15-17]). For
a nonlinear model calculated connectivity was in perfect accordance with the system
definition.

Example 5. We will discuss some comparisons of normalized DTF and PDC measures
(elaborated in a number of cited and other papers). As exhaustively shown by Baccala
Sameshima [3,18] for the simulated models, PDC exactly determines the structural con-
nectivity graphs of directly connected processes, while DTF is rather imprecise, mixing
the direct connections with transitive influences. The results for PDC on examples with
synthetic models are impressive. An example of a model emulating EEG with 6 processes
is analyzed in Baccala Sameshima [18]; there the zero threshold is at 0.04 to 0.05. Another
example with experimental data, comprising activity of structures: hippocampal CA1,
somatosensory A3, motor A10 cortical areas and dorsal raphe DR, has zero threshold
at 0.05, with conclusions that PDC exactly describes the direct structural connectivity,
while DTF has undetermined degree of imprecision in description of direct structural
connectivity.

Example 6. Analyzing structural stability, in order to emphasize importance of all steps
in measure computations and comparison procedure, here we will discuss in more detail
another example of PDC/DTF computation and comparison by the same authors. Anal-
ysis of an experiment focused on two shortly separated time slices: [8,10] s and [13,15]
s, with frequency range [0,48] Hz, exhibiting structural connectivity changes, is given in
detail by Baccala and Sameshima [3]. Beside CA1, A3, A10, (as in the above mentioned
experiment), the synchronous recordings of signals from cortical A17, hippocampal CA3
and dentate gyrus DG were included as well. Thus, this and previous experiment have a
common substructure. We reproduce some of their findings/diagrams in order to be able
to present our analysis.

The first time slice representation with mutual interactions of recorded structures
for both PDC and DTF is given on Figure 1 (the same way of presentation is rather
frequent in the literature), depicting classical coherence with solid lines; shaded spec-
tra are respectively PDC and DTF calculations. The authors chose here common 0.20
zero-threshold (very high: 20% of the normalized range! Four times greater than for PDC
in the last mentioned experiments).These matrices were used to determine the spectral
maximum for calculated PDC and DTF values for all frequencies, for each individual
link, as presented in the Table 1. The matrix in the Table 1 was used subsequently to
integrate and draw the connectivity diagrams for both PDC and DTF, for the first time
slice, which is shown in Figure 2.
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Figure 1 PDC calculated connectivity matrix on the left, shaded spectra, DTF connectivity matrix on
the right, shaded spectra; DC presented with solid lines (reproduced from Baccala and Sameshima
[3]).

Table 1 The table corresponds to the first time slice of the experiment - related to Figure 1;
eachmatrix coordinate has on top the PDC spectral maximum from the spectrum at
corresponding coordinates in Figure 1 left, below the spectral maximum for DTF - similarly
obtained from Figure 1 right; the connectivity links are sorted column vise, i.e. in the first
column are A10 links towards the areas defined as row names (reproduced from Baccala
and Sameshima [3])

A10 A3 A17 CA1 CA3 DG

A10 0.18 0.53 0.03 0.06 0.09

0.25 0.58 0.06 0.10 0.09

A3 0.09 0.27 0.06 0.04 0.07

0.13 0.28 0.14 0.12 0.17

A17 041 0.41 0.11 0.12 0.10

0.43 0.47 0.17 0.23 0.23

CA1 0.66 0.39 0.23 0.32 0.11

0.49 0.53 0.57 0.32 0.38

CA3 0.27 0.46 0.33 0.39 0.67

0.61 0.50 0.51 0.29 0.48

DG 0.44 0.44 0.47 0.47 0.41

0.58 0.59 0.35 0.35 0.31

Figure 2 Connectivity diagram relating activity of involved brain structures which are obtained from
the matrices in Figure 1 and Table 1 using: PDC-left diagram, DTF- right diagram (reproduced from
Baccala and Sameshima [3]).
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The similar kind of spectral distribution matrices as in Figure 1 was published for sec-
ond time slice, from which the table of maximums for both PDC and DTF was derived,
which is shown in Table 2. This matrix of maximums was subsequently used to generate
connectivity diagrams for the second time slice, as shown in Figure 3. The connec-
tivity diagrams in Figures 2 and 3 depict together connectivity patterns and degree of
each connectivity link by arrows in four different degrees (dashed, thin, thicker, thick
and blank for zero), in the normalized [0,1] range partitioned into five values, each 0.2
in diameter.
Thus, with zero = 0.2, spectral maxima were extracted for each calculated signal pair,

projecting - grading the obtained value into the corresponding connectivity degree
for each of PDC, DTF, finally considering their difference in connectivity degree to
draw the conclusions on PDC/DTF performance (analysis of connectivity diagrams
differences).
In terms of comparisons/similarity of measures as in (18), we can reconstruct here

applied procedure (similarly in numerous other studies), which is partly implicit, as the
following sequence of steps:

(∗)

1. set common zero = 0.2;
2. N1 operator provides PDC spectral maximum for a given pair of inputs;
3. N2 operator provides DTF spectral maximum;
4. P operator (the same projector operator P) for both PDC and for DTF were

applied as projections (the five value grading, after calculation of spectral maxima);
5. difference of the graded maxima is exhibited as visualized difference

- a pair of connectivity graphs depicting all pairs of signals in the respective
time slices.

First, in concordance with the structural stability conditions mentioned above (on
the intersection of two substructures measure is common; in repeated measurements

Table 2 This table is obtained in the similar way as Table 1 from the spectral matrices
corresponding to the second time slice of the experiment (reproduced from Baccala and
Sameshima [3])

A10 A3 A17 CA1 CA3 DG

A10 0.77 0.32 0.49 0.33 0.31

0.82 0.76 0.32 0.22 0.19

A3 0.09 0.49 0.32 0.06 0.14

0.28 0.79 0.22 0.07 0.09

A17 0.44 0.36 0.11 0.07 0.11

0.37 0.68 0.34 0.18 0.13

CA1 0.14 0.29 0.53 0.44 0.25

0.20 0.65 0.66 0.41 0.28

CA3 0.24 0.26 0.54 0.28 0.52

0.27 0.65 0.72 0.22 0.28

DG 0.10 0.09 0.19 0.53 0.30

0.15 0.36 0.39 0.57 0.49
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Figure 3 Connectivity diagram, which are obtained for the second time slice, for PDC- left diagram,
and DTF - right diagram. The changes in diagrams (Figure 2 to Figure 3) depict brain dynamics in time in
the described experiment. Increasing time resolution will improve our understanding of processes in the
brain during experiment, thus replacing single diagrams with their time changes, i.e. time sequences of
diagrams (reproduced from Baccala and Sameshima [3]).

(here, experiments) measure fluctuations must remain tolerable, i.e. obtained values
coherent), we will show how rather slight variations of zero threshold, borrowed from the
similar experiments cited above and presented in the cited articles influence connectivity
estimates in the same example. Thus, ranging zero threshold: 0.2, 0.1 to 0.06, respectively
(the values from earlier two experiments), we obtain three different connectivity
difference patterns, for both time slices of this experiment.
Rather than comparing all connectivity degrees, we restrict our comparisons to a

single quality: the existence of connectivity only - the differences at zero level which is
essential, shown in Figures 4 and 5. Complete connectivity difference diagrams are easily
regenerated according to the related grading (five connectivity grades if zero = 0.2; ten
grades if zero = 0.1; 33 grades when zero = 0.06).

Figure 4 The diagrams of difference in connectivity for the first time slice, shown in Figure 2, for
common zero threshold equal to: 0.20, 0.10 and 0.06 (left to right) respectively, (e.g. the first diagram
is complementing graphs in Figure 2 with respect to connectivity only: if we take a union of this
graph links and the links in the PDC graph in Figure 2 the result is the DTF graph on the right in
Figure 2; grading not shown for the simplicity). Solid lines show: DTF connected, while PDC
disconnected. Thus, connectivity graph for PDC is a substructure of a corresponding graph for DTF (Note:
with a data from Table 1, taking 0.06. instead of 0.20 zero threshold, for the first time slice PDC has 10 more
connectivity links, while DTF obtains 8 new links).
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Figure 5 The diagrams of difference in connectivity for the second time slice of the experiment as
shown in Figure 3, when common zero threshold is equal to: 0.20, 0.10 and 0.06 respectively (e.g. the
first diagram is complementing graphs in Figure 3 with respect to connectivity only, grading not
shown for the simplicity). Solid lines: DTF connected, while PDC disconnected; dashed lines - opposite. In
the first two cases connectivity graph for PDC is not a substructure of a corresponding graph for DTF (note
increase of connectivity links for the second time slice, similar to the first time slice).

We can notice that small changes in zero-threshold have substantial consequences in
the changes of connectivity structures and their differences. Stability analysis is manda-
tory whenever we have serious synthesis, i.e. when we organize and map experimental
data into higher level structures with semantic significance. The brain connectivity graphs
are of high importance; hence, their stability is mandatory. Second, in order to reduce or
overcome some of listed problems, we shall make/suggest some changes in the measure
comparison sequence, while maintaining the original procedure as much as possible:

(∗∗)

1. varying common zero as done in Figures 4 and 5;
2. apply N1 operator (provides PDC spectral maximum) for a given pair of inputs;
3. apply N2 operator (provides DTF spectral maximum) for a given pair of inputs;
4. perform zero-ideal congruence for PDC,

i.e. identify the corresponding values from previous step whose difference � zero;
5. perform zero-ideal congruence for DTF;
6. perform zero-ideal congruence for PDC and DTF corresponding values;
7. generate the graph of connectivity difference;
8. P operator (the same projector

operator P) for both PDC and for DTF, on their respective Graphs (optional).

Clearly, in (∗∗) we have two updates of the original (∗) procedure:

• zero unification - performed prior to grading, consequently,
avoiding that the small (difference) becomes bigger or big, just because ranges
of measures are replaced (simplified) by coarser than original smooth [0,1]-range;

• zero-threshold: common as in (∗), varying
over values which were present in the above mentioned similar/related experiments.

In Table 3 and 4 we have only coordinate vise differences of corresponding N1,2
normalized values for PDC and DTF for both time slices of the experiment.
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Table 3 The difference of spectral maximum of PDC and spectral maximum of DTF
coordinate vise for the first time slice (obtained form Table 1); eachmatrix coordinate is
the difference of the values of PDF and DTF at the same coordinate, as exhibited in
Table 1; the connectivity links are sorted column vise, i.e. in the first column are A10 links
towards the areas defined as row names

A10 A3 A17 CA1 CA3 DG

A10 -0.07 -0.05 -0.03 -0.04 0.00

A3 -0.04 -0.01 -0.08 -0.08 -0.10

A17 -0.02 -0.06 -0.06 -0.11 -0.13

CA1 0.15 -0.14 -0.34 0.00 -0.27

CA3 -0.34 -0.04 -0.18 0.10 0.19

DG -0.14 -0.15 0.45 0.12 0.10

Table 4 The difference of spectral maximum of PDC and spectral maximum of DTF
coordinate vise for the second time slice (obtained form Table 2)

A10 A3 A17 CA1 CA3 DG

A10 -0.05 -0.44 0.17 0.11 0.12

A3 -0.19 -0.30 0.10 -0.01 0.05

A17 0.07 -0.32 -0.23 -0.01 -0.02

CA1 -0.06 -0.36 -0.13 0.03 -0.03

CA3 -0.03 -0.39 -0.18 0.06 0.24

DG -0.05 -0.27 0.20 -0.04 -0.19

The calculated differences in Table 3 and Table 4 are used in the corrected comparison
sequence (∗∗) in the zero - unification step, in order to generate more appropriate dia-
grams of PDC/DTF connectivity difference, which are presented in Figure 6 (for the first
time slice of the experiment, for the three different zero-threshold values) and Figure 7
(for the second time slice of the experiment).
After the above basic convergence of the two measure comparison, we should not omit

the following divergence.
Third, as mentioned above we did not essentially depart from measure computations

and comparison deduced by Sameshima and collaborators in the cited papers. However,
we have to notice that the Z3 is violated in the above analysis and resulting graphs, in the

Figure 6 The first time slice corrected connectivity comparison (i.e. using corrected procedure (**)
instead of (*)). Unification of measures (based on differences in Table 3 and Table 4) prior to grading leads to
the simplification of connectivity difference graphs - they are substructures of graphs in Figure 4. From left to
right: the difference in connectivity (corresponding to original diagrams in Figure 2) for zero threshold equal
to: 0.20, 0.10 and 0.06 respectively. Solid lines: DTF connected while PDC disconnected.
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Figure 7 The second time slice corrected connectivity comparison (i.e. using corrected procedure (**)
instead of (*)). Unification of measures prior to grading leads to the graphs of connectivity difference, which
are substructures of graphs in Figure 5. From left to right, the difference in connectivity (corresponding to
original diagrams in Figure 3) for zero threshold equal to: 0.20, 0.10 and 0.06 respectively. Solid lines: DTF
connected while PDC disconnected.

sense: zero thresholds (with the large difference) are unified to the max of the two with-
out proper argumentation. Strictly: the measures have to be independently computed for
each node, generating corresponding connectivity graphs. These computations have to
be performed independently for each measure, using the corresponding significance level
for the zero threshold, without any common zero harmonization. Finally, the agreement
of the two measures is presented on the two graphs, to obtain the combined connectivity
difference = measure comparison graph.
If we strictly follow the arguments related to statistic significance, with values 0.2 for

PDC taken from [3] as above, and known value for normalized DTF (0.0045), then we
would get results differing much more. In this case let the procedure corresponding to
(∗) be corrected to:

(∗ ∗ ∗)

1. set zero separately for each of PDC, DTF;
2. apply N1 operator ( provides PDC spectral maximum) for a given pair of inputs;
3. apply N2 operator (provides DTF spectral maximum) for a given pair of inputs;
4. perform zero-ideal congruence for PDC,

i.e. identify the corresponding values from previous step whose difference � zero;
5. perform zero- ideal congruence for DTF;
6. generate the graph of connectivity difference.

For instance, just for the matrices in Table 1 and 2 reproduced above, we would nec-
essarily conclude, for the connectivity only, with connectivity degree omitted, that there
are numerous other links differing the resulting graphs. The strict connectivity-only
differential graphs respecting (***), for thematrices in Table 1 and 2 we present in Figure 8.
Even, when the measures are with identical value, between the two thresholds one

measure will indicate connectivity, while other will deny it; example: in the first matrix

0 <threshold DTFDG→A10 =numerically PDCDG→A10 =threshold 0.

Hence, when the analyzed systems are tuned so that the compared measures measure
all the links approximately identically, when we have largely departing zero thresholds
for the involved measures, we can obtain arbitrarily large number of links which are zero
for one and non zero for the measure with lower threshold. Moreover, when the measure
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Figure 8 Difference of connectivity graphs for DTF and PDC, respectively for the data from Table 1
and Table 2; connectivity for both DTF and PDC are determined separately for their respective
independent significance thresholds. Then with the resulting connectivity graphs for each measure, the
graph of connectivity difference is generated. Continuous arrows mark DTF confirmation of connectivity,
while PDC confirms disconnection. Compare these two graphs to the corresponding graphs on the left side
in Figures 4 and 5.

values are in the opposite order, i.e. when the one with lower threshold is smaller than the
other with the larger, but both being between the thresholds, the measure with smaller
value will indicate connectivity, while the other with the larger value will deny it.
For example, in the second matrix (Table 2)

0 <threshold DTFDG→A3 <numerically PDCDG→A3 =threshold 0.

Obviously, harmonizing the thresholds (reducing their difference) will influence that
the listed problems are diminished. This is why careful prior investigation related to Z3
is necessary.

Example 7. [D. Adams Axiom] The founders of DTF and collaborating teams have
recently published serious breakthrough in the cognitive task modeling established via
DTF based connectivity, e.g. [19-22]. A few problems are present in those findings. Con-
nectivity of first orbits are dominating in the presented structures, e.g. Figures 9 and 10.
This fact can only be related to the problematic behavior of DTF in the case when
transitive connectivity nodes from higher orbits exist. However, even some small num-
ber of cascade nodes in connectivity networks are shown, with no comment on the
malfunctioning of DTF when such nodes are present (example c. In Figure 9).
These authors are producing unconvincing results on connectivity. Generally, basic data

from which their connectivity results are derived are hidden; in some cases when they

Figure 9 Connectivity diagrams reproduced from [19].
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Figure 10 Connectivity diagrams reproduced from [20], “The snapshots from the movie showing the
propagation in the gamma band (35-41 Hz) during the right finger movement (at the right) and
movement imagination...”.

present their data, they do it in a very reduced or unreadable form; it is immediately
clear that the produced connectivity diagrams presentmuch less connectivity arrows than
there are in reality seen through the DTF.
Avoiding connectivity over full frequency domains and choosing connectivity in some

of the popular frequency bands, will, clearly, lead to the reduced number of connectivity
links, since a number of connectivity links related to all frequencies except those in the
focus, is not mentioned at all. This is wrong.
An example of unfaithful connectivity pattern avoiding to show many more connected

links, where selected-marked connections could be determined as desirable ones, is
shortly reviewed here (reproduced from [19], Figure 9). Without getting involved in
the nature of the experimentation with cognitive modeling by connectivity patterns, we
briefly touch their technical elements.
Instead of presenting connectedness, “differential” diagrams are offered, similarly to

what we used in the evaluation of comparisons of measures. However, presentation of
each of the investigated measure data and original frequency distributions are manda-
tory before differential diagrams are presented: the complete connectivity picture has to
be presented prior to presentation of its filtered derivatives. As it is done in the cited and
other publications, visualization of documented problematic properties of DTF might
be suppressed or masked. Differential diagrams alone are insufficient, since large/very-
large can become small/negligible, thus inappropriately reflecting reality. For example, the
Figures 11 and 12, which are reproduced from [19], show connectivity matrices with 400
frequency distributions, each ranging in the 0-40 Hz interval, from which the conclusions
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Figure 11 (reproduce from [19])“A typical example of the DTF functions for one subject during
memory (a) condition. In each small panel, DTF (or power spectrum) is a function of frequency (from 1 to 40
Hz). Power spectra are marked on the diagonal. Off-diagonal flows are from the electrode marked below
(column) to the electrode marked (in the raw) at the left of the picture”.

on connectivity patterns related to cognitive states, i.e. “memory” versus “reasoning” tasks
are “deduced”, as presented in Figure 9.
As one can notice immediately, there are many more connections in the (magnified)

reproduced matrices than presented in the figure: according to accepted and presented
criteria, the “memory tasks” exhibit over 234 connections, while “cognitive tasks” have
over 217 connections in the shown 380 related spectral distributions in the matrices. The
large complexity of connectedness in the obtained connectivity distributions is multiply
masked; for example, the near values in different tasks are mutually evaporated; the pre-
sentation of connectedness fragmented into separately presented bands, choosing only
the preferable band, reduces severely the number of really linked nodes; finally, the zero
threshold positioned arbitrarily, more precisely: arbitrarily choosing what is zero, works
as a selected/desired kind of a filter. Consequently, the result: a picture with a “nice” con-
nectivity diagram as given in the Figure 9, instead of a diagram with hundreds of links if
the computations were performed satisfactorily.
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Figure 12 (reproduce from [19])“A typical example of the DTF functions for one subject during
reasoning condition (b). In each small panel, DTF (or power spectrum) is a function of frequency (from 1 to
40 Hz). Power spectra are marked on the diagonal. Off-diagonal flows are from the electrode marked below
to the electrode marked at the left of the picture”.

Conclusions
We are summarizing our conclusions into the following remarks:

Remark 1 (Comparison/computational sequence). The corrected comparisons of DTF
and PDC, for connectivity only, as performed above, show very reduced differences of
twomeasures for zero-threshold from the analyzed and similar experiments (most impor-
tantly above the zero-threshold, exhibiting which structures are connected versus those
which are not), thus confirming that if analyzed with computation and comparison proce-
dure corrections proposed here, the connectivity structures are much less different than
it was demonstrated in [2,3], as presented in the graphs to the left, Figures 4 and 5, versus
Figure 6 and Figure 7 (left graphs) with original common zero threshold.

Remark 2 (Aggregation prior to comparison; functionally related frequencies). The
above analysis was performed, maintaining strictly the reasons and methodology per-
formed by authors of the original analysis [2,3]. Here we have to stress that performed as
it is and with our interventions in the original evaluations as well, PDC and DTF measure
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comparison was not performed directly on the results of these measures computations,
thus, comparing directly DTF(i, j, λ) and PDC(i, j, λ) - the results of measurements at each
couple of nodes for each frequency in the spectrum, but, instead, as in the cited arti-
cles, the measurement of differences of these two connectivity measures was performed
on their synthetic representations - their prior “normalization” - aggregations, obtained
as the

max{μ(〈i, j〉, λ) | λ ∈ range(Sp)},
(range(Sp) is the effective spectral - frequency range) and, in the original, on their further
coarser projections. In this way, in comparison of these measures the authors had sub-
stantial departure from original connectivity measurement computations for PDC and
DTF. This needs further argumentation before acceptance.
Imagine a set of year final scores, with marks for 8 subjects. Then a student with all

B’s would be inferior to the student with one mark A and the rest zeros. Without further
argumentation and selectivity, this is usually not the accepted way of ranking. Of course,
in special cases it can make sense, like in music, math, sport or military schools.
If the parts of spectrum are related to different processes which are not simply com-

parable in importance, for example, if one spectral band is responsible for movement
detection in BCI, while the other for the deep sleep, then, depending on the appli-
cation, either can be taken as representative, but most often we will not take such
individual maxima of both as representing quantity for their comparisons; while, on
the restrictions it can be completely reasonable. If we look closely at the correspond-
ing coordinates in the distribution matrices in Figure 1, for the compared measures we
will find examples of frequency maxima distant in the frequency domain or even in the
opposite sides of spectral distributions (e.g. (5,1) - first column fifth row; then (4,2), (5,2)
or (6,5)).
The equation involving otherwise distant operators, even such as

max{μ(〈i, j〉, λ) | λ ∈ range(Sp)} =
∫
Sp

μdμ (19)

becomes practically solvable when the domain becomes narrow enough. Obviously, we
are approaching the question: when we have advantage of frequency measures over the
temporal domain measures. In the comparison of DTF and PDC via their aggregations
as explained above, much simpler insight is obtained, though, the specificity of individual
frequencies is lost and comparison became essentially comparison of some sort of mea-
sure time sublimates. In such circumstances computations of connectivity measures and
their comparisons need supplementary argumentation for the chosen aggregation, sta-
bility estimation and ought to be complemented with comparison of DTF and PDC time
counterparts, for which we would propose their G-inverses DTF and PDC.
We stress the demand for the comparison computation sequence correction as pro-

posed in (∗∗) and (∗ ∗ ∗).

Remark 3 (Zero thresholds and connectedness). Maintaining original (or corrected)
computational sequence in measure comparison, note that DTF computation and PDC
computation are performed independently. Consequently, each of these two measures
computations should apply corresponding zero threshold, as known in the literature,
thus determining zero-DTF and zero-PDC independently for each of the computations,
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with independent connectedness conclusion for each measure for each pair of nodes.
Then, the connectivity graphs would be statistically correct. However, if the two zeroes
differ substantially, that might cause paradoxical results. Possible zero threshold unifi-
cation would be highly desirable, as in e.g. [3] and other cited articles, but it must be
well justified.

Remark 4 (Aggregations over frequency domain). Note that spectra exhibited in
Figure 1 for PDC and DTF are somewhere identical, somewhere similar/proportional and
somewhere hardly related at all - as the consequence of different nature of these two mea-
sures (which is established by other numerous examples). The same is true for the spectral
parts above zero threshold. These thresholds for the two measures cannot be unified
without argumentation. Consequently, if the comparison of the two measures connec-
tivity graphs was performed at individual frequencies or narrow frequency bands, the
resulting graphs of differences in connectivity would be more fateful; they would be sim-
ilar to those presented at certain frequencies, but would differ much more in the rest of
the frequency domains. Obviously, connectivity at certain frequency or provably related
frequencies is sufficient connectivity criterion, valid to establish that compared measures
behave consistently.

Remark 5 (Brain dynamics and connectivity measures). Spectral time distributions -
Spectrogram like instead of spectral distributions are necessary to depict brain dynamics.
In the cited articles, dynamic spectral behavior is nowhere mentioned in measure com-
parison considerations, but it is modestly present in some examples of brain connectivity
modeling - illustrating PDC applicability to the analysis focused on specific event - details
in [2,3]; also, in [19] authors recently started using matrices of spectrogram distributions
instead of matrix distributions as in Figure 1. Comparison of PDC and DTF as in here
analyzed articles, shows no concerns related to spectral stability /spectral dynamics and
comparison results. It is clear that comparisons based on individual spectral distributions
are essentially insufficient, except in proved stationary spectra, and that local time his-
tory of spectral distributions - spectrograms, need to be used instead. Brain is not a static
machine with a one step instruction execution.

Remark 6 (Characterization theorems for (dis)connectedness [3]). Here we have a little
sensitive play of quantifiers. By contraposition of the statement of the characterization
theorem, involving information PDC and DTF as cited above, we obtain equivalence of
the following conditions

(o) the nodes j, i are connected;

(a′) ∃λ(λ ∈[−π ,π ]∧iPDCij(λ) �= 0);

(b′) ∃λ(λ ∈[−π ,π ]∧iDTFij(λ) �= 0);

(c′) ∃λ(λ ∈[−π ,π ]∧fj→i(λ) �= 0);

(20)

and similarly with other conditions in the list.
Observe conditions (a‘) and (b‘). Note that λ is independently existentially quantified

above. That would suggest that iPDC and iDTF simultaneously confirm the existence
of connectivity from j to i. However they might do it in totally unrelated frequencies,
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which could make that equivalence meaningless, similarly as discussed in Remark 2. The
equivalence of (a‘) and (b‘) apparently contradicts the nonequivalence of PDC and DTF
as extensively verified in the cited very detailed analysis of Sameshima and collaborators,
since these are the special cases of iPDC and iDTF. However, the statement of the theorem
is true for the two variable case only, when the orbits are reduced to 1st orbits only. In this
case cumulative influence reduces to the direct influence.
Authors in [13] do not mention zero thresholds, but in practice it has to be determined.

Again, as discussed earlier and in the Remark 2, note that the same problems are equally
present here. E.g. computationally we could easily have

0 < iDTFij(λ) = iPDCij(λ) = 0.

Nobody would like that.

Remark 7 (Recent DTF based connectivity graphs with simplified orbits). In the recent
publications and conference reports of research teams using DTF as connectivity mea-
sure, presenting even rather complex brain connectivity graphs involving rather numer-
ous nodes, majority of graphs contain practically only first orbits, which is the case when
deficiencies of DTF are significantly masked since cascade connectivity is hidden are not
faithful, departing seriously from reality.

Remark 8 (Real-time applicability of DTF and PDC). Both DTF and PDC measures
are not applicable in real time applications like Brain Computer Interfaces - BCI, where
the will generated patterns in brain signals are recognized and classified by a number of
direct methods. Some of methods are applicable to certain cases of weak connectivity
as well.

Remark 9 (DTF connectivity versus zero threshold). The DTF based connectivity dia-
grams where the zero is chosen arbitrarily high or much higher than the established
zero threshold (Example 7), purposely reduces the number of connectivity links by large
amount, offering highly distorted facts that are established by DTF. The similar holds
for synthetic spectrogram connectivity matrices. If the methodology of [3,18] was used,
as in the examples 4-6 above, one could not deduce less than 234 connected nodes in
the “memory” task and not less than 217 connections in the “cognitive” task, which is
strongly inconsistent with the connectivity diagrams, as reproduced here in Figures 9 and
10, derived from the reproduced matrices in Figures 11 and 12.

Remark 10 (Spectrograms instead of spectra). In the cited articles, dynamic spectral
behavior is nowhere mentioned in measure comparison considerations, but it is present
in some examples - illustrating PDC applicability to the analysis of dynamics which is
focused on specific event (details in [2,3]; also, they started using spectrogram distribu-
tions like matrices in Figure one, in [19]). Comparing PDC and DTF in this way there is no
concern of issues related to spectral stability/spectral dynamics and comparison results.
It can be demonstrated that comparisons based on individual spectra are essentially
insufficient, except in proved stationary spectra, and that local time history of spectra -
spectrograms, need to be used instead.



Jovanović et al. EPJ Nonlinear Biomedical Physics 2013, 1:2 Page 24 of 25
http://www.epjnonlinearbiomedphys.com/content/1/1/2

Remark 11 (The DTF has beenmaking a number of serious problems since its invention).
The authors have been continuously making efforts to overcome the problems invent-
ing further modifications of DTF, or by applying certain restrictions to their connectivity
measure in order to reach connectivity diagrams which would look more faithful. Hardly
had they succeeded in these intentions.

Discussion
Clearly, without careful mathematical consideration and argumentation connectivity
graphs, in here cited and many other published articles are of shaken fatefulness and need
supplementary corroboration.
Connectivity measures are different enough that the question of their logical coherence

is appropriate. This is elaborated through measure comparisons. Here the comparison
of DTF and PDC measures is discussed in some detail, as an illustrative example, giving
enough material for this issue to be more carefully investigated. As verified on a number
of nontrivial synthetic systems, connectivity conclusions by DTF are not well founded,
while PDC has good capacity in precise structural description, confirming PDC superior-
ity to DTF measure. Quite often PDC � DTF, but it does not hold generally, hence PDC
is not a general refinement of DTF and these two measures are essentially different. The
problem of proper significance level determination remains partly open and needs fur-
ther elaboration. When applied to real neurologic data, the methods seem to be rather
sensitive on the zero - threshold and comparison of PDC and DTF with proper care of
small quantity maintenance gives less or more impressive PDC-DTF difference than the
results published in [3], enhancing the need for insights into details of measure computa-
tion and comparison procedures, with identification of non commutative operators. The
zero threshold harmonization for compared measures is a difficult and challenging issue
which ought’s to be solved properly.
The number of innovative alternative approaches is growing; aiming to overcome

certain difficulties they are successfully applied in demanding applications e.g. [23-29].
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