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Abstract

We present the construction of a planar vector field that yields the firing rate of a
bursting Izhikevich neuron can be read out, while leaving the sub-threshold behavior
intact. This planar vector field is used to derive lumped formulations of two complex
heterogeneous networks of bursting Izhikevich neurons. In both cases, the lumped
model is compared with the spiking network. There is excellent agreement in terms of
duration and number of action potentials within the bursts, but there is a slight
mismatch of the burst frequency. The lumped model accurately accounts for both
intrinsic bursting and post inhibitory rebound potentials in the neuron model, features
which are absent in prevalent neural mass models.
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Background
The Izhikevich neuron is a computationally simple, yet biologically realistic neuronmodel
[1,2], which belongs to the class of nonlinear integrate-and-fire neurons. Bifurcation anal-
ysis of a general class of nonlinear integrate-and-fire neurons is given in [3,4], whereas a
more detailed analysis of the quadratic form is given in [5].
When coupled in a complex network, knowledge of the individual neurons does not

suffice to predict the network behavior. As large networks are not suitable for bifurcation
analysis, one seeks to formulate low dimensional reductions that capture the space-time-
averaged behavior of the network. An example is theWilson-Cowan reduction [6,7] where
the mean population activities are governed by a low dimensional system of ordinary
differential equations (ODEs) or integro-differential equations respectively. Just as many
other lumped formulations of neural activity, these models pivot on the relation between
the individual cells’ firing rates and aggregate network activity [8-10].
Indeed, the most traditional form of a lumped model for a single population of neurons

has the form

Qx = f (x, I) (1)

with x representing either the mean membrane potential or the postsynaptic conduc-
tances/currents.
Q is a linear differential operator which characterizes the synaptic dynamics. Here,

f depicts the firing rate as function of the population’s own activity x, due to con-
nections within the population, and some external input I. This basic framework is
easily extended to include multiple populations or other features, such as spike fre-
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quency adaptation and spatial structures (e.g. neural fields). Yet, it should be noted
that models of this form only describe the dynamic evolution of populations averaged
quantities.
Population density methods, on the other hand, describe the evolution of the distri-

bution of neurons over the state space, which depends on the quantities that are used
in the underlying neuron model [11-14]. In [14] application of the moment closure
method is investigated, whose steady-state solution, in its simplest form (closure at the
first moment), is the so-called mean-field firing-rate model. Next, in [15] this method is
applied to arrive at a planar system of switching ODEs for all-to-all coupled networks
of Izhikevich neurons with different topologies. This system is subsequently analyzed by
means of numerical bifurcation methods [16] and direct simulation. Its variables are the
mean adaptation and the synaptic input (here the adjective ‘mean’ can be omitted due to
the all-to-all coupling). One assumption is that the mean adaptation follows the mean fir-
ing rate, rather than the individual firing rates. Furthermore a separation of time scales
is assumed: the adaptation time scale is assumed to be much larger than the membrane
time-constant.
The analogy with [15] is that we also consider networks of Izhikevich neurons. The

novelty is the construction of the Izhikevich Planar Vector Field (IPVF) from which the
firing rate function can be read out. The resulting reduced vector field is three dimen-
sional in contrast to the two-dimensional vector field obtained by [15]; we keep the mean
membrane potential as a state variables. This state variable follows naturally from the
construction from the associated planar vector field. We claim that it is necessary to
retain the membrane potential, particularly to deal with post-inhibitory rebound spikes/
bursts.
This paper is structured as follows: Izhikevich’ spiking neuron model is studied with

parameters corresponding to an intrinsically bursting neuron. Using phase plane analy-
sis, the discontinuous resets are approximated with a smooth branch, which relates to the
firing rate of the cell. Most importantly, the proposed approximation leaves all of sub-
threshold dynamics intact. The resulting model is shown to match quantitatively with
the original spiking model, with respect to both spike count and spike timing. Upon
making several assumptions relating to network connectivity and synchrony, a random
network of Izhikevich neurons can be collapsed into a system of ODEs. Finally, we give
two examples of random networks, not necessarily all-to-all connected, of heterogeneous
Izhikevich neurons where we compare the true network behavior with the properties of
the corresponding reduced vector field.

Methods
Izhikevich neuron in the phase plane

The Izhikevich neuron is given by the following equations [1]

{
V̇ = 0.04V 2 + 5V + 140 − u + Iext(t)

u̇ = a(bV − u)
, V (t−) = 30 ⇒

{
V (t+) = c

u(t+) = u(t−) + d
(2)

Indeed, with four parameters the model is able to reproduce many of the key features
observed in real neural tissue, e.g. intrinsic spiking/bursting, spike-frequency adaptation,
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and rebound spikes/bursts. Due to a reset process, present in all other integrate-and-
fire models, the model does not require a fast recovery variable relating to a resonating
current. Hence, the variable u is often seen as a slow variable within the neuron, e.g.
Calcium concentration.
Since the Izhikevich model has two variables, phase plane analysis is a natural starting

point for characterizing the model. Figure 1 depicts the phase portrait of an intrinsically
bursting neuron: Starting on the V -nullcline at point A, the dynamics are exclusively gov-
erned by the u component which are, in this case, directed downwards. As u decreases
slowly, the fast dynamics in the V direction push the system towards the V -nullcline,
causing the orbit to closely follow the quadratic V -nullcline. After passing point B, V
increases fast until the threshold V = 30 is reached and V is reset onto the green line
with increased u. As long as the system’s reset point is right of the unstable branch of the
V -nullcline, another spike is generated. Note that this condition is equivalent to the resets
points lying below point C: the intersection point of the V -nullcline and the reset line
V = c (in green). Upon being reset above C, the dynamics in the V -direction are pointing
towards the left and the system evolves in that direction until the limit cycle is completed
when hitting A.
The main objective is to replace the fast spiking dynamics by a slowly changing variable

which represents the neurons firing rate, whilst leaving the subthreshold dynamics intact.
In particular:

• The right branch of the V -nullcline corresponds with the firing threshold.
• The left branch of the V -nullcline characterizes the fast dynamics in the

subthreshold regime.
• The u-nullcline left of the firing threshold determines the slow dynamics in the

subthreshold regime.
• Point B corresponds to the entrance of the bursting regime.
• Point C corresponds to the exit of the bursting regime.
• Point A corresponds to the undershoot after burst termination.

An interpretation of these criteria, expressed as a set of ODEs, is as follows.

A C

B

Figure 1 V − u phase plane of the Izhikevich neuron. (Blue) nullclines of V and u, (green) reset value c, and
(red) periodic solution of the system. The red dots correspond with resets. See text for description of the
points A, B, and C.
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Reduction

First, the model’s ability to produce spikes, i.e. V quickly reaches 30mV, is taken away
by adding another branch to the V -nullcline, see Figure 2. Orbits close to this additional
branch correspond with a neuron being in burst-state and, since the condition (non-)
bursting is binary, the precise shape and position of this artificial branch are of little
importance.
In the bursting regime, the time between consecutive spikes is approximated as follows.

Assuming that J = −u + Iext(t) varies sufficiently slow to be considered as a constant
parameter for V , the reduced membrane potential v satisfies:

v̇ = 0.04v2 + 5v + 140 + J , v(0) = c (3)

where the fact is used that v is reset to c after each spike. Albeit nonlinear, this equation
has an analytic solution v(t; J , c) which is used to find the time-to-spike Ts for which
v(Ts; J , c) = 30:

Ts(J ; c) = T(J ; 30) − T(J ; c),

with function T given by:

T(J ; ν) = 10√
4J − 65

arctan
(

2ν + 125
5
√
4J − 65

)

In order to have Ts(J ; c) positive, it is required that (3) has a positive right hand side at
the initial value:

0.04c2 + 5c + 140 + J > 0. (4)

Inside the bursting regime the instantaneous firing rate is now readily determined as
the reciprocal of the inter spike times.
For reasons explained later, the firing rate inside the bursting regime is capped at a

minimal value:

fb(J ; c) =

⎧⎪⎨
⎪⎩

max
(

1
Ts(J ; c)

, fmin

)
0.04c2 + 5c + 140 + J > 0,

fmin otherwise

A C

B

Figure 2 V − u phase plane of the reduced model. (Blue) nullclines of V and u, (green) reset value c, and
(red) periodic solution of the system. See text for description of the points A, B, C, and C′.
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In order to distinguish between bursting or non-bursting regime, the actual firing rate
(where J is substituted) is set to

f (V , u, Iext; c) = Hω(V − c) fb(−u + Iext; c) (5)

with Hω a smooth approximation to the Heaviside step function with steepness-
parameter ω. The step function aligned at the reset value now distinguishes between
the bursting and non-bursting regimes of the neuron. In the remainder of this text, the
following is used:

Hω(V ) = 1
1 + exp(−ωV )

with ω = 20.
This firing rate is not only themain output variable of the neuron, for it also finds its way

back into in the dynamical system. Namely, every time a spike is generated, the recovery
variable is increased by d, which yields an time-averaged increase rate of fd in the reduced
model. Hence, the recovery variable in the reduced model takes the form:

u̇r = a(bVr − ur) + d · f (Vr, ur, Iext; c).

As a final step, the V -nullcline has to be adjusted such that another branch appears in
the phase portrait, c.f. Figure 2. The most natural choice would be to have this branch
follow the time-averaged value of V during a spike, i.e.

v̄ = 1
Ts(J ; c)

∫ Ts(J ;c)

0
v(t)dt

Although a closed expression can be found for this integral, this approach is not pursued
here. The primary reason is that the precise position and shape of the additional branch
are merely insignificant. Instead, a much simpler expression is chosen which does not
obscure the resulting equations as much as the expression for v̄ would.
Despite the fact that the shape of the new branch is of little importance, the local max-

imum at C′ is not. Since at this point the stability of the slow manifold, i.e. V -nullcline,
changes due to a fold bifurcation, it corresponds with the termination of the burst. For
that reason it is important that this maximum is in line with the original termination point
C, such that the undershoot at A is preserved accurately. Taking into account the require-
ment that subthreshold behavior should not be modified too much, the new branch is
conveniently introduced by an exponential. In this case, the full reduced system takes the
form:

V̇r = g(Vr, ur, Iext) := 0.04V 2
r + 5Vr + 140 − ur + Iext − ξ exp(η(Vr − c))

u̇r = h(Vr , ur, Iext) := a(bVr − ur) + d · f (Vr, ur, Iext; c)
(6)

with η and ξ parameters characterizing the additional branch. Appropriate values for
these parameters can be determined as follows: Have u = nv(V ) depict the V -nullcline
of the original Izhikevich model, then the level of point C in Figure 2 is given by nv(c).
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For u = nvr(Vr) = nv(Vr) − ξ exp(η(Vr − c)) the Vr-nullcline of the reduced model, the
following equations should hold to have point C′ at the same level as C:

nvr(c + κ) = nv(c)

n′
vr(c + κ) = 0

with κ representing the horizontal separation between C and C′, and n′
vr denoting the

derivative of nvr . Solving the equations results in:

η = n′
v(c + κ)

nv(c + κ) − nv(c)
ξ = nv(c + κ) − nv(c)

eηκ
.

where n′
v is the derivative of nv. It is undesirable to choose low values of κ since the

additional branch will be very steep and the stiffness of the dynamical system increases
unnecessarily. Large values, on the contrary, will result in a branch which is too gradual,
such that both the timing and the subthreshold behavior are affected. Values of κ in the
interval [0.5, 2] give merely identical results; here is chosen for κ = 0.8.

Remark

Since the appearance fmin in the reduction is unexpected, it is worthwhile to discuss both
the necessity and interpretation for this parameter. In the reduced vector field, an equi-
librium on the right branch of the Vr-nullcline corresponds to a tonically firing neuron,
while absence of such an equilibrium corresponds to an intrinsically bursting neuron. In
the case of the bursting neuron, passage from the right branch of the Vr-nullcline to the
left is guaruanteed by raising the ur-nullcline such that possible equilibria are removed.
This raise is achieved by the introduction of fmin.
Physiologically, fmin represents the minimum the firing rate for a neuron at which it can

still be considered ‘bursting’. While this depends on the type of cell at hand, it is generally
expected that large cells will have lower firing rates (also within bursts) than small cells.

Single cell comparison

In order to assess the quality of the proposed reduction (6), simulations are performed
for different parameters of the model. Not only the membrane potentials and recovery
variables of both models, also the output firing rate of the reduced model is matched with
the discrete spikes of the original model. For that, define:

N(t) := number of spikes in [0, t] (7a)

Nr(t) :=
∫ t

0
f (Vr(τ ), ur(τ ), Iext(τ )) dτ (7b)

for the Izhikevich and the reduced model respectively.
Figure 3 shows a typical comparison of a tonically bursting neuron. The general

impression is that the reduction is very successful in mimicking the original Izhikevich
model. Although in the latter half of the simulation the inter-burst frequency of the
reduced model is higher, which results in a phase difference between both mod-
els, the average spiking behavior, on the other hand, is accurately preserved by the
reduction.
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Figure 3 Tonic bursting neuron, which is suppressed with a negative current. Top, middle, and bottom
diagrams correspond with V , u and N (c.f. (7)) respectively. Parameters as follows: a = 0.02, b = 0.2, c = −55,
d = 2, κ = 0.8, and fmin = 0.1. Furthermore, a background current I0 is given of magnitude 6, which is set
to−6 between 200–500ms, resulting in a suppression of the bursting pattern.

A comparison for the generation of post-inhibotory rebound potentials of a single cell
in given in Appendix A.

A population of Izhikevich neurons

With the reduction of a single neuron into place, the next natural step is to consider the
global activity patterns of a network of neurons. A single population of merely identical
cells is considered first, which can be generalized to multiple populations afterwards.
For now, consider a network ofN neurons, which are randomly connected. It is assumed

that each spike arriving at a synaptic terminal at time t̂ results in an identical response of
the synapse, say q(t − t̂), yielding the postsynaptic current

Ipost(t) = ḡq(t − t̂)(Vpost(t) − Esyn)

with ḡ representing the maximal conductance, Esyn the associated reversal potential and
Vpost the membrane potential of the postsynaptic neuron. Furthermore, let q be the
impulse response of a linear operator Q such that

Qq = δ

where δ is theDirc delta mass centered at 0 and equality holds in the sense of distributions.
For any neuron i, let Ti(t) := {t̂j, j = 1, . . . , n|0 < t̂1 < . . . < t̂n ≤ t} be the (possibly
empty) set of spike times of neuron i up to and including time t. Define the synaptic
activation si of postsynaptic channels as the convolution of q with the spike times Ti, then
the following two formulations are equivalent

si(t) :=
∑

t̂∈Ti(t)

q(t − t̂) ⇔ Qsi(t) =
∑

t̂∈Ti(t)

δ(t − t̂)
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Next, have wij represent the synaptic weight of the connection from neuron j onto neu-
ron i and note thatwij = 0 implies that neuron j does not connect with i. The postsynaptic
current arriving at cell i is then given by

Isyn,i(t) = ḡ
N∑
j=1

wijsj(t)(Vi(t) − Esyn) (8)

with Vi the membrane potential of neuron i.
In order to deduce the average network activity, a number of assumptions has to be

made. Since all of these assumptions are common practice in neural mass modeling (c.f.
[17]), we only state them briefly in the following part. The reader, however, is encouraged
to challenge these assumptions and reflect on their implications.

• Temporal averaging. First the individual spike trains are averaged by representing
them with the firing rate. That is, every neuron is described by the reduced system (6)
as described in the previous section. The corresponding synaptic variable satisfies:

Qsi = f (Vi, ui, Iext − Isyn,i)

• Randomly connected network. LetW be a random variable representing the
synaptic weight of connections, such that all synaptic weights wij are assumed to be
independently identically distributed asW . Note that if P(W = 0) > 0, the network
is not necessarily all-to-all connected. Define

w̄ := EW , S(t) :=
N∑
i=1

si(t)

which gives rise to the expected postsynaptic current at cell i

Isyn,i(t) = ḡw̄S(t) (Vi(t) − Esyn) (9)

• Synchrony. Neurons receiving a similar input S are assumed to be reside closely
together in phase space. Hence, the averages

V (t) := 1
N

N∑
i=1

Vi(t), u(t) := 1
N

N∑
i=1

ui(t) (10)

suffice to approximate, c.f. (6)

V̇ = 1
N

N∑
i=1

g(Vi, ui, Iext − Isyn,i) ≈ g(V , u, Iext − Isyn) (11a)

u̇ = 1
N

N∑
i=1

h(Vi, ui, Iext − Isyn,i) ≈ h(V , u, Iext − Isyn) (11b)

with

Isyn = Isyn(t) = ḡw̄S(t) (V (t) − Esyn)

Finally, due to both synchrony and linearity of Q, one finds

QS = Nf (V , u, Iext − Isyn) (11c)

The reduced model (11) now represents the lumped network activity.
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Extensions to multiple populations are easily incorporated in a similar fashion. An
inhibitory population, for instance, can be included by introducing another differential
operator, say Q2, which corresponds with a slower postsynaptic current, combined with
an appropriate reversal potential.

Results
Comparison

Now that the general derivation of a neural mass model based on Izhikevich neurons
is discussed, the correspondence with the network of spiking neurons they represent is
studied next. Therefore, simulations of both the neural mass and the detailed model are
performed and the relation between them is investigated.
First, only the dynamics of a single population of merely identical excitatory neu-

rons are considered, since we are primarily interested in the quantitative and qualita-
tive comparison of both formulations. A model with multiple populations is studied
afterwards.

Setup

To start, exponential synapses with a decay rate α are chosen for all connections in all
network, hence

Q := d
dt

+ α

Furthermore, in the spiking neuron network we set pcon as the probability for one neu-
ron to make a connection to another. The synaptic weights of these connections will all
be equal and set to w0. The expected weight for a connection, is now given by:

w̄ = w0pcon (12)

The random generation of connections between cells will lead to slight inhomogeneities
in the network. Additional inhomogeneities are introduced by randomizing the parame-
ters of the individual cells. This type of perturbation will ensure that the synchronization
patterns we observe are due to the network interactions, rather than the intrinsic prop-
erties of the neurons. Within the reduced model, the expected value of each of these
parameters is used.

Simulations

Simulations of the spiking neuron network are performed with Norns —Neural Network
Studioa: a dedicated C++ simulation tool with an intuitive Matlab interface. Networks
are generated with their connections as described above. The spike trains obtained from
Norns are post-processed within Matlab, which we discuss in detail below.
The formulated neural mass model can, depending on the parameters, become a stiff

system of ODEs. In that case, Matlab’s ode23s is used to for numerical integration, while
ode45 is used otherwise.

Comparison

To assess the similarity between the models, it is desirable to compare the same physical
quantities within both models. In this light, the synaptic activation S appears to be the
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best choice: it can be determined from individual spike trains and it is the key variable in
the lumped model.
For the lumped model, S is readily available from the simulations. In the network of

spiking neurons, we reconstruct the synaptic activation of all neurons by convolving their
spike trains with the shape of a postsynaptic response.

One excitatory population

Simulations of a population of excitatory intrinsically firing neurons are shown in
Figure 4. The top diagram shows the behavior of a single isolated neuron in the the net-
work and its corresponding firing rate reduction, c.f. Figure 3. The raster plot of a 1000
randomly connected such neurons is shown in the middle and the total activity of both
the network and the lumped model are shown in the bottom diagram. It can be seen that,
although all connections are excitatory, the frequency of bursting of the network is lower
than that of the single cell.
This is explained as follows: as all connections in the network are excitatory, the V -

nullcline is effectively lifted during the network bursts due to the external input from
synapses. When the network burst terminates, the V -nullcline drops to its initial posi-
tion. This creates the larger range of u which must be traversed for both the spiking and
quiescent phase of the bursting, resulting in more spikes and longer interburst intervals
respectively.
These network bursts are, apart from a small difference in interburst-frequency, accu-

rately reproduced by the network reduction (11). Although the interburst-frequency is
off, the last network burst (starting at t = 900 ms) reveals that the amplitude, shape, and
duration are each mimicked in great detail by the neural mass model.

Isolated cell

Network

V
 (

m
V

)
S

Time (ms)

Figure 4 Simulations for an isolated cell and a 1000 cell network of excitatory intrinsically bursting
neurons. Top: membrane potential of isolated Izhikevich neuron with average parameters showing the
original spiking neuron (blue) and the approximation by the reduced model (red). A random network of 1000
such spiking neurons is created, of which spike trains of 50 neurons are depicted in the raster plot (middle).
Bottom diagram depicts the convoluted spike trains of all neurons in the network (blue), c.f. Section
‘Comparison’. The synaptic variable S of the corresponding lumped model of this network is also shown (red).
Neuron parameters: a ∼ N(0.02, 0.001),b ∼ N(0.2, 0.01), c ∼ N(−55, 1), d ∼ N(2, 0.1), κ = 0.8, fmin = 0.2,
and Iext ∼ N(6, 0.2). Network parameters: α = 10−1, ḡ = 0.002, Esyn = 0, pcon = 0.03, and w0 = 1.
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Network with rebound bursts

One of the key features of the reduction is that the subthreshold dynamics of the
Izhikevich neuron are left intact, and, as a consequence, it is able to generate post-
inhibitory rebound potentials, c.f. Appendix A. To illustrate this distinct feature of the
model, simulations are performed with a network whose rhythms relies heavily on
rebound activity.
A network consisting of three populations of neurons, one inhibitory (I) of 100 neu-

rons and two excitatory (E1 and E2) of 300 neurons each, is set up with connections
as in Figure 5A. All parameters of the network are given in Appendix B, but here we
give a global outline of its properties. Due to inhomogeneities, neurons in E1 fire either
sporadically or are quiescent otherwise and, furthermore, these neurons are capable of
firing rebound bursts in response to an inhibitory barrage by neurons in population I.
Population E2 contains intrinsically bursting neurons, which, similar to the example in
Section ‘One excitatory population’, produce regular network bursts. The slow parameter
a, however, is decreaed such that the burst-frequency is lower. These bursts will activate
the inhibitory neurons in population I.
A simulation of this particular network is shown in Figure 5B by means of raster plots.

The pattern arises because a population bursts in E2 gives rise to activation of I, which, in
turn, causes a synchronized post-inhibitory burst in E1. This burst in E1 is large enough
to initiate the next population burst in E2 before intrinsic mechanisms would. This com-
pletes the cycle. Figure 5C shows the summed synaptic variables of each population
in blue.

1500

0

0

200

1000 1500Time (ms) Time (ms)1000 1500
0

1000

S

I

E1

E2

A B C

Figure 5 Simulations for a network with post-inhibitory rebound potentials. (A) depicts the network
structure of the three populations: two excitatory populations, E1 and E2, each consisting of 300 cells and one
inhibitory population I of 100 cells. (B) shows raster plots for 20 neurons within the populations I, E1 and E2
respectively. Note that some cells in E1 are quiescent. The activation of synapses S for each population is
shown in (C), where (blue) corresponds to the spiking neuron network and (red) represents the reduced
model. See text for a description of network activity. Einh = −80 and other parameters in Appendix B.
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The population reduction from this model follows readily from the single popula-
tion discussed before; for clarity though, the model and its parameters are stated in
Appendix B. The time evolution of the resulting reduced model is shown in red in
Figure 5C. Apart from a change in amplitude, the frequency of the reduction matches
closely with the original spiking neuron network. The fact that the period of this solution
matches better than in the single population example, see previous section, could be
explained by the following: In the single population model, c.f. Figure 4, the network
bursts are initiated when the slow variable u reaches a certain threshold value and are,
therefore, dependent on the value of the slow variable at burst termination. Since the
network of Izhikevich neurons increases the slow variable u with discrete steps d, a
discrepancy is to be expected with respect to the reduced model, which increases u in a
time-continuous manner. Although the slow variable plays a role in the rebound bursts in
the network at hand, the timing of the (rebound-)bursts depends more so on the synaptic
time constants — which are identical in both models.
Next, we note that, apart from a difference in amplitudes, the shapes of the bursts in

both populations I and E2 are accurately mimicked. The discrepancy is largest in popula-
tion E1, with respect to both amplitude and burst duration. It appears that it is this gain
in E1 in amplitude which gives rise to an increased excitatory input onto E2, resulting
in a burst with increased magnitude. Subsequently, the stronger burst in E2 explains the
amplitude gain of the inhibitory population I.
The natural question to ask now is why the post-inhibitory rebound bursts in E1 are

poorly reproduced by the reduced model. The fact that some neurons are quiescent dur-
ing the bursts, as follows from the raster plot in Figure 5, suggests that inhomogeneities
play a role in this; either due to variations in single cell parameters, or to differences in
number of network connections. Indeed, further investigation has revealed that, at the
level of a single cell, the generation of rebound bursts is particularly sensitive to varia-
tions in parameter b. Simulations (not shown) of the spiking neuron network in which
for all cells b is set to a constant — rather than drawn from a normal distribution, c.f.
Appendix B — show that the bursts of neurons in E1 are more alike than in Figure 5. As
a consequence, the result lies closer to the response of the reduced model (in which all
inhomogeneities of the original network are averaged); not only for population E1, also
for I and E2.
Finally, we illustrate the models capability to distinguish between different types of inhi-

bition. Figure 6 shows simulation results for an identical network structure as before, with
the exception that the reversal potential of the inhibitory synapses is set to Einh = −65.
For this value is close to the resting membrane potentials of the neurons in E1, the inhibi-
tion becomes effectively of the shunting type. Because shunting inhibition does not alter
the membrane potential of a cell, it is unable to activate the slow currents responsible
for the post-inhibitory rebound potentials and, hence, the neuron is unable to fire such
action potentials. This matches with the results in Figure 6B: the raster plot of E1 shows
not only less activity, but it appears more irregular too. This is better seen by the synaptic
variable in Figure 6C, which is 3–4 times smaller than in 5C. Here it is also visible that
this background activity of E1 is absent during inhibitory activity of population I, hence
the shunting inhibition successfully suppresses this activity.
Without the rebound potentials of E1, neurons in E2 receive less excitatory input and the

frequency of network bursts is merely determined by the intrinsic dynamics of population



Visser and Van Gils EPJ Nonlinear Biomedical Physics 2014, 2:6 Page 13 of 17
http://www.epjnonlinearbiomedphys.com/content/2/1/6

1500

0

0

200

1000 1500Time (ms) Time (ms)1000 1500
0

1000

S

I

E1

E2

A B C

Figure 6 Similar to Figure 5, except that the post-inhibitory rebound potentials are taken away by
raising the reversal potential of the inhibitory synapses to Einh = −65. (A) depicts the network
structure, with the reduced inhibition denoted by the dashed line. Raster plots of the three populations are in
(B) and the net synaptic activation of the populations in (C). Here, the original network is plotted in (blue)
and the lumped model in (red).

E2. that the neurons in E2 are not subject to bursts, it remains unclear why the difference
in amplitude between the network and corresponding reduction is still in place. A partial
explanation is that the excitatory background activity in E1, which is missed by the popu-
lation reduction, lowers the threshold of neurons, such that network bursts are generated
faster than without input. With a lower inter-burst time, the slow recovery variable u has
not decayed as much as it would have if the bursts were further apart. As a result of this,
the number of spikes within the burst is expected to be lower. Although this effect plays a
role, it is expected that other, yet unidentified mechanisms, are also involved.

Discussion
The work presented here shows how the global activity of networks of intrinsically burst-
ing Izhikevich neurons can be described with a lumped model. This lumped model relies,
as the majority of reduced models, on the firing rate of individual neurons. Assisted by
phase plane analysis of a single neuron an additional term is proposed, which abolishes
the need for discontinuous resets. Effectively, the new term divides the phase space in
two regions, corresponding with bursting and non-bursting. Within the bursting regime,
the neuron’s firing can, once a separation of timescales is assumed, be determined ana-
lytically, while in the non-bursting regime, the neuron’s original subthreshold behavior is
kept intact. We note that the resulting model is Lipschitz smooth and its phase portrait
shares key features with the Fitzhugh-Nagumo [18,19] and Morris-Lecar [20] reductions.
In our case, however, ‘active periods’ correspond to an entire burst of action potentials
rather than a single pulse. Using simulations, the proposed single cell reduction is shown
to match well with the original Izhikevich model. Although a small mismatch is present
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between the models’ bursting frequency, both duration and number of action potentials
within the burst are accurately represented.
With the single cell model into place, the scene is set for lumping networks of burst-

ing neurons. The cells’ planar dynamics are augmented with another state variable,
which corresponds to the activation of synapses within the population. By employment
of assumptions common in neural mass modeling, a reduced network model is formu-
lated, which consists of three state variables representing the population averages of
membrane potential, slow current, and synaptic activation. Similar as for the single cell
model, simulations are performed to assess the quality of the newly proposed model. For
one population of excitatory intrinsically bursting neurons, the reduced model matches
closely with the network dynamics. Indeed, the network bursts, which last longer than
the bursts of isolated cells, are mimicked by the lumped model in terms of amplitude,
duration, and shape. While the model’s burst frequency is lower than the corresponding
spiking neuron network, both models’ bursting frequencies in the network are notably
lower than the isolated cells.
Here it is important to point out that a very similar result for a single population has

been obtained in [15]. The fact that their formulation is expressed in only two state vari-
ables, suggests that the third state variable in our formulation is superfluous. We believe,
however, that this third state variable, which corresponds to the mean membrane poten-
tial, is essential for keeping the neurons’ subthreshold behavior intact. To demonstrate
this particular trait of our reduction, a network is simulated whose rhythm depends crit-
ically on the subthreshold behavior (c.f. Figure 5). More precisely, neurons belonging to
one of the three populations are capable of generating post-inhibitory rebound bursts,
which affect the network’s behavior at a global scope. Apart from a discrepancy in ampli-
tude, simulations show that the reduced model is able to accurately describe the network
activity. By raising the inhibitory reversal potential, such that the inhibition becomes
shunting, we show that this particular rhythm is, in both the original spiking neuron net-
work and the reduced model, indeed reliant on the presence of post-inhibitory rebound
bursts (c.f. Figure 6).
The single cell reduction proposed in this article considers the bursting Izhikevich neu-

ron merely as an example. We indeed assumed the reset value c to be higher than the
local minimum of theV nullcline (i.e. c > −62.5) and d > 0. Although this particular for-
mulation might not be applicable when the parameters at hand do not correspond with
the bursting type, we believe that the procedure here can be generalized for all relevant
choices of parameters. Going even further, it appears to us that, besides the Izhikevich
and other integrate-and-fire models, also higher dimensional models can be reduced in
a similar manner; that is, leaving the subthreshold dynamics intact by only adjusting the
dynamics in the suprathreshold regime. In this regime, one should seek to eliminate the
(very) fast dynamics and determine their contribution on the slow variables. Yet, these
fast variables can play a prominent role in the subthreshold dynamics (e.g. to generate
post-inhibitory rebound potentials). Elimination of all fast variables could therefore have
an unanticipated (and hence undesirable) effect on the subthreshold behavior. So caution
is required when constructing firing rate reductions.

Endnote
aSoftware freely available via ModelDB entry 154739: http://senselab.med.yale.edu/

modeldb/showmodel.asp?model=154739.

http://senselab.med.yale.edu/modeldb/showmodel.asp?model=154739
http://senselab.med.yale.edu/modeldb/showmodel.asp?model=154739
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Figure 7 Negative current induces post-inhibitory rebound potentials in both the spiking neuron and
the reduction. Top, middle, and bottom diagrams correspond with V , u and N (c.f. (7)) respectively.
Parameters as follows: a = 0.03, b = 0.25, c = −52, d = 2, κ = 0.8, and fmin = 0.1. Furthermore, Iext = −10
between 200–500 ms, after which both models fire (the equivalent of) three action potentials.

Appendix A: Single cell comparisonwith post-inhibitory rebound potentials
Figure 7 shows a concrete example of post-inhibitory rebound potentials in both the spik-
ing model (black) and rate model (gray). An negative current of −10 is injected between
200–500 ms, which lowers the membrane potential. After the inhibiting current is taken
away, the spiking neuron fires three action potentials. Not only the count of action poten-
tials is accurately reproduced by the rate model, also the time course of all other state
variables is mimicked precisely.

Appendix B: Details of three population network
This appendix provides the details of the three population network described in
Section ‘Network with rebound bursts’. The spiking neuron is characterized first, fol-
lowed by the reduced model.

Table 1 Population parameters

Param. I E1 E2 Description

N 100 300 300 Number of cells in population

a N(0.02, 0.001) N(0.03, 0.001) N(0.01, 0.001) Decay rate of recovery variable

b N(0.2, 0.01) N(0.3, 0.01) N(0.2, 0.01) Slope parameter of u nullcline

c N(−55, 1) N(−55, 1) N(−55, 1) Reset value after spike

d N(2, 0.1) N(1, 0.1) N(2, 0.1) Increment of u after spike

Iext N(0, 0.2) −3 N(6, 0.2) Constant applied background current
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Table 2 Connectivity parameters

Source

Dest. I E1 E2

I
p = 0.1

ḡ = 0.02

E1
p = 0.3

ḡ = 0.02

E2
p = 0.1 p = 0.1

ḡ = 0.02 ḡ = 0.005

B.1 Spiking neuron network

Three population of neurons are generated, one inhibitory I and two excitatory E1 and
E2. Parameters for neurons within each population are i.i.d. according to the normal
distributions given in Table 1.
Connections between neurons are determined randomly, depending on which popula-

tion they belong to. The population-specific probability p of forming a connection from
a source neuron to a destination neuron is denoted in Table 2; as is the related maxi-
mal conductance ḡ. All connections formed have synaptic weight w0 = 1, hence weight
distributionW is given by

W =
{
1 w.p.p

0 w.p.1 − p

Synaptic dynamics of all cells, both excitatory and inhibitory, are described by the first
order process

ds
dt

+ αs = δ(t − T)

with T the time of a presynaptic spike. Values of α, as well as the corresponding reversal
potential of the resulting postsynaptic current, are in Table 3. The total synaptic current
arriving at a particular cell is now determined as in (8).

B.2 Reduction

Following the reduction procedure outlined in Section ‘A population of Izhikevich
neurons’, each population of neurons is reduced to a system of three differential
equations. For k ∈ {i, 1, 2} representing the populations I, E1, E2 respectively, the state
variables are denoted by Vk , uk , and Sk . Parameters for the right hand side functions fk ,
gk , and hk , c.f. (11), are for each population set to their expected values given in Table 1.
Interactions between populations are exclusively via the synaptic current Isyn, which we

Table 3 Synaptic parameters

Exc. Inh. Descriptions

α 5−1 10−1 Synaptic decay rate

E 0 −80 Reversal potential
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state in full detail for clarity. Let Isyn,k represent the postsynaptic current arriving at cells
of population k = {i, 1, 2}, then one finds:

Isyn,i = ḡi2pi2S2(Vi − Eexc)

Isyn,1 = ḡ1ip1iSi(V1 − Einh)

Isyn,2 = ( ḡ21p21S1 + ḡ22p22S2)(V2 − Eexc)

where pkl and gkl for k, l ∈ {i, 1, 2} are as in Table 2 and we used (12).
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