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Abstract

Background: We present analytical and numerical studies on the linear stability of
spatially non-constant stationary states in heterogeneous neural fields for specific
synaptic interaction kernels.

Methods: The work shows the linear stabiliy analysis of stationary states and the
implementation of a nonlinear heteroclinic orbit.

Results: We find that the stationary state obeys the Hammerstein equation and that
the neural field dynamics may obey a saddle-node bifurcation. Moreover our work
takes up this finding and shows how to construct heteroclinic orbits built on a
sequence of saddle nodes on multiple hierarchical levels on the basis of a
Lotka-Volterra population dynamics.

Conclusions: The work represents the basis for future implementation of meta-stable
attractor dynamics observed experimentally in neural population activity, such as Local
Field Potentials and EEG.
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Background
Neural field models, such as [1,2] are continuum limits of large-scale neural networks.
Typically, their dynamic variables describe either mean voltage [2] or mean firing rate
[1,3] of a population element of neural tissue (see [4,5] for recent reviews).
The present article considers the paradigmatic Amari equation [2] describing the spa-

tiotemporal dynamics of mean potential V (x, t) over a cortical d-dimensional manifold
� ⊂ R

d:

∂V (x, t)
∂t

= −V (x, t) +
∫

�

K(x, y)S[V (y, t)] dy , (1)

where K(x, y) is the spatial synaptic connectivity between site y ∈ � and site x ∈ �, and S
is a nonlinear, typically sigmoidal, transfer function. This model neglects external inputs
for simplicity but without constraining the generality of the subsequent results. Possible
synaptic time scales are supposed to be included in the kernel function K and can be
introduced by a simple scaling of time.
In general, the connectivity kernel K(x, y) fully depends on both sites x and y, which

case is referred to as spatial heterogeneity. If the connectivity solely depends on the differ-
ence between x and y, i.e. K(x, y) = K(x − y), the kernel is called spatially homogeneous

© 2014 beim Graben and Hutt; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

http://creativecommons.org/licenses/by/2.0


beim Graben and Hutt EPJ Nonlinear Biomedical Physics 2014, 2:4 Page 2 of 17
http://www.epjnonlinearbiomedphys.com/content/2/1/4

[2]. Furthermore, if the connectivity depends on the distance between x and y only, i.e.
K(x, y) = K(||x − y||), with ||x|| as some norm in �, the kernel is spatially homogeneous
and isotropic [6].
Spatially homogeneous (respectively isotropic) kernels have been intensively studied in

the literature due to their nice analytical properties. In this case, the evolution equations
have exact solutions such as bumps [2,7], breathers [8-10] or traveling waves [7,11]. More-
over, such kernels allow the application of the technique of Green’s functions for deriving
partial neural wave equations [7,12,13].
The present work focuses on spatially heterogeneous neural fields which have been

discussed to a much lesser extent in previous studies than homogeneous neural fields
[14-22]. This study resumes these attempts by investigating stationary states of the Amari
equation (1) with heterogeneous kernels and their stability. Such a theory would be
mandatory for modeling transient neurodynamics as is characteristic, e.g., for human
cognitive phenomena [23], human early evoked potentials [24] or, among many other
phenomena, for bird songs [25].
The article is structured in the following way. In the “Results” section we present new

analytical results on stationary solutions of the Amari equation (1) and their stability in
the presence of heterogeneous connectivity kernels. Moreover, we present numerical sim-
ulation results for the kernel construction and its stability analysis. The “Methods” section
is devoted to construct such kernels through dyadic products of desired stationary states
(cf. the previous work of Veltz and Faugeras [26]). A subsequent linear stability analysis
reveals that these stationary solutions could be either attractors or saddles, depending
on the chosen parametrization. Finally, we present a way to connect such saddle state
solutions via heteroclinic sequences [27,28] in order to construct transient processes.

Results
In this section we present the main results of our study on heterogeneous neural fields.

Stationary states and their stability

Analytical study

The Amari equation (1) has a trivial solution V0(x) = 0 and non-trivial solutions V0(x) �=
0 that obey the Hammerstein integral equation [29]

V0(x) =
∫

�

K(x, y)S[V0(y)] dy . (2)

Inspired by Hebbian learning rules for the synaptic connectivity kernel K(x, y) which
found successful applications, e.g., in bi-directional associative memory [30], we consider
symmetric spatially heterogeneous kernelsK(x, y) = K(y, x) that can be constructed from
dyadic products of the system’s non-trivial stationary states

K(x, y) = (V0 ⊗ V0)(x, y) = V0(x)V0(y) . (3)

Together with Eq. (2), this choice yields the additional condition for non-trivial
stationary states

1 =
∫

�

V0(y)S[V0(y)] dy , (4)
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which is a nonlinear integral equation of Fredholm type. Since 0 < S(x) < 1 for a logistic
transfer function, a necessary condition for non-trivial stationary states is

1 <

∫
�

V0(y) dy (5)

which indicates immediately a method to find a non-trivial solution numerically as shown
below.
Small deviations u(x, t) = V (x, t)−V0(x) from a non-trivial stationary state V0(x) obey

the linear integro-differential equation

∂u(x, t)
∂t

= −u(x, t) +
∫

�

L(x, y)u(y, t) dy, (6)

where L(x, y) = K(x, y)S′(y) and S′(y) = dS[V0(y)] /dV0(y). A linear stability analysis
of (6) carried out in the next section shows that a non-trivial stationary state V0(x) is
either a fixed point attractor, or (neglecting a singular case) a saddle with one-dimensional
unstable manifold. Such saddles can be connected to form stable heteroclinic sequences.

Numerical study

To gain deeper insight into possible stationary solutions of the Amari equation (1) and
their stability, the subsequent section presents the numerical integration of equation (1)
in one spatial dimension for a specific spatial synaptic connectivity kernel.
Since previous experimental studies [31] have revealed Gaussian distributed probability

densities of neuron interactions in the visual cortex of rats, it is reasonable to look for
spatially discretized stationary states in the family of Gaussian functions

V0,i = W0 exp
(−(i − i0)2�2x/2σ 2) /

√
2πσ + κηi (7)

parameterized by the amplitude W0, the variance σ 2, the noise level κ and the spatial
discretization interval �x.
By virtue of this parametrization of the discrete Hammerstein equation, it is sufficient

to fit the model parameters optimally in such a way that the Hammerstein equation holds.
Figure 1(a) illustrates a noisy kernel K and (b) shows the corresponding stationary state
V0(x) for certain parameters.
For each stationary state, one obtains a kernel L(x, y) of the linear stability analysis

whose spectrum characterizes the stability of the system in the vicinity of the stationary
state. If the eigenvalue with the maximum real part ε1 > 1, then the stationary state V0(x)
is exponentially unstable whereas ε1 < 1 guarantees exponential stability. Figure 1(b)
shows the eigenmode e1(x) corresponding to the eigenvalue with maximum real part
which has a similar shape as the stationary state.
Moreover Figure 2 presents parameters for which V0(x) fulfills the Hammerstein

equation (2), i.e. for which V0(x) is the stationary solution. We observe that some param-
eter sets exhibit a change of stability, i.e. the eigenvalue with maximum real part may be
ε1 > 1 or ε1 < 1 for certain parameter subsets.
Taking a closer look at the stability of V0(x), the computation of the eigenvalues εk , k =

1, . . . , n reveals a dramatic gap in the spectrum: the eigenvalue with maximum real part
ε1 is well isolated from the rest of the spectrum {εk>1} with |εk>1| < 10−14. This is in
accordance to the discussion of Eq. (17) on the linear spectrum.
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Figure 1 Illustration of (a) a noisy kernel K(x, y) and (b) the corresponding solution of the
Hammerstein equation (solid line) together with the first eigenmode e1(x) corresponding to the
eigenvalue with the maximum real part ε1. Parameters are α = 0.86, W0 = 1.76, σ = 0.15, θ = 3.0,
κ = 0.2 and n = 200, L = 1.

Figure 3 presents the spatiotemporal evolution of the heterogeneous neural field start-
ing close to the stable stationary state V0(x), see point (1) in Figure 2. As expected, the
field activity remains in the vicinity of the stable state.
In contrast, for the system starting close to an unstable stationary state, cf. point (2)

in Figure 2, the field activity moves away from V0(x) and approaches a new stationary

Figure 2 Parameters which guarantee the solution of the Hammerstein equation (2) which are the
stationary solutions of Eq. (1) and the line styles encode their exponential stability (stable: solid line,
unstable: dashed line). Further parameters are κ = 0.0, θ = 3.0.
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Figure 3 Numerically simulated spatio-temporal dynamics of the heterogeneous neural field (left)
and stationary states (right). Here the stationary state V0(x) is exponentially stable with the parameters of
point (1) in Figure 2. The simulation starts close to the stationary state V(x, 0) = V0(x) + ξ(x) with the
random numbers ξ(x) taken from a zero-mean Gaussian distribution with variance 0.3. The plot on the left
hand side shows the deviation from the stationary state V0(x). The plot on the right hand side shows the
stationary states V0(x) (solid line) and the final field activity at large times V(x, t = 125) (dashed line) which is
almost identical to V0(x). The spatial domain has length L = 1 with n = 300.

state close to but different from V0(x), cf. Figure 4. This new stationary state obeys the
Hammerstein equation (2).
Recalling the presence of the trivial stable solution V = 0, the activity shown in Figure 4

indicates the bistability of the system for the given parameter set.
Figure 5 supports this bistability for the same parameter set but different initial condi-

tions, which presents the jump from the unstable stationary stateV0(x) to the trivial stable
stationary state V = 0. The choice whether the system approaches the upper or lower
stable stationary state depends on the initial condition of the simulation and is random
for random initial conditions as implemented in Figures 3, 4 and 5. Hence, this example
reveals the existence of a saddle-node bifurcation in heterogeneous neural fields.
Finally, we would like to stress that the analysis presented above does not depend on

the smoothness of the kernel and stationary state. For a strong noise level in the synaptic
interaction kernel K , the analytical discussion above still describes the stationary state
and the linear stability quite well as shown in Figure 6 for a stable stationary state V0(x)
close to the stability threshold.

Heteroclinic orbits

The previous section has shown that heterogeneous neural fields may exhibit various sta-
tionary states with different stability properties. In particular we found that stationary
states could be saddles with one-dimensional unstable manifolds that could be con-
nected to stable heteroclinic sequences (SHS: [27,28]) which is supported by experimental
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Figure 4 Numerically simulated spatio-temporal dynamics of the heterogeneous neural field (left)
and stationary states (right). Here the stationary state V0(x) is exponentially unstable with the parameters
of point (2) in Figure 2. The plot on the left hand side shows the deviation from the stationary state V0(x), the
right hand side panel presents the stationary states V0(x) (solid line) and the final field activity at large times
V(x, t = 125) (dashed line) which is close to V0(x). Other parameters are taken from Figure 3.

Figure 5 Numerically simulated spatio-temporal dynamics of the heterogeneous neural field (left)
and stationary states (right). Here the stationary state V0(x) is exponentially unstable with the parameters
of point (2) in Figure 2. All parameters are identical to Figure 3, however the final field activity at large times
V(x, t = 125) (dashed line) is close to the trivial solution V = 0. This jump of activity recalls the presence of
the trivial stationary solution V = 0 and hence reflects the multi-stability of the heterogeneous neural field.
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Figure 6 Strongly random connectivity kernels yielding noisy exponentially stable stationary states.
Panel (a) shows K(x, y), (b) L(x, y) = K(x, y)S′(y), (c) spatio-temporal simulation starting close to the stationary
state V0, (d) stationary states V0(x) (red) and V(x, t = 25) (black). Parameters are κ = 0.5,α = 0.88,W0 = 1.75,
σ = 0.15, θ = 3.0 yielding a maximum eigenvalue ε1 = 0.95, i.e. close to the stability threshold.

evidence [24,32,33]. We present in the following paragraphs our main findings on het-
erogeneous neural fields exhibiting heteroclinic sequences and also hierarchies of such
sequences.

One level heteroclinic sequence

It is possible to expand the integral in the Amari equation (1) into a power series yielding

∂V (x, t)
∂t

+ V (x, t) (8)

= K0 +
∫

�

K1(x, y)V (y, t) dy + 1
2

∫
�

∫
�

K2(x, y, z)V (y, t)V (z, t) dy dz .

with kernels

K0 = 0 (9)

K1(x, y) =
∑
k

(σk + 1)V+
k (y)Vk(x)

K2(x, y, z) = 2
∑
kj

ρkjσjV+
k (y)V+

j (z)Vk(x) .

The solution of Eq. (8) represents a heteroclinic sequence that connects saddle points
{Vk(x)} along their respective stable and unstable manifolds. Its transient evolution is
described as winnerless competition in a Lotka-Volterra population dynamics governed
by interaction weights ρik between neural populations k and i and their respective growth
rates σi.
In Eq. (9) the {V+

k (x)} comprise a bi-orthogonal system of the saddles {Vk(x)}. There-
fore, the kernel K1(x, y) describes a Hebbian synapse between sites y and x that has been
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trained with pattern sequenceVk . This finding confirms the previous result of [18]. More-
over the three-point kernelK2(x, y, z) further generalizes Hebbian learning to interactions
between three sites x, y, z ∈ �. Note that the kernels Ki are linear combinations of dyadic
product kernels, similar to those introduced in (3). Thus, our construction of heteroclinic
orbits straightforwardly results in Pincherle-Goursat kernels used in [26].

Multi-level hierarchy of heteroclinic sequences

Nowwe assume that the neural field supports a hierarchy of stable heteroclinic sequences
in the sense of [25,34]. For the general case one has to construct integral kernels for a
much wider class of neural field equations which can be written as

V (x, t) =
∫ t

−∞
dτ G(t, τ)

∫
�

dy K(x, y)S[V (y, τ)] (10)

where the new temporal kernel G describing synaptic-dendritic filtering is usually the
Green’s function of a linear differential operator Q, such that G(t, τ) = G(t − τ) and the
temporal integration in Eq. (10) is temporal convolution. Equation (10) can be simplified
by condensing space x and time t into spacetime s = (x, t). Then, (10) becomes

V (s) =
∫
M
H(s, s′)S[V (s′)] ds′ (11)

with a tensor product kernel H(s, s′) = (K ⊗ G)(s, s′) and integration domain M =
�×]−∞, t].
For only two levels in such a hierarchy, we obtain

V (x, t) =
∫

�

dx1
∫ t

−∞
dt1K1(x, x1)V (x1, t1)

−
∫

�

dx1
∫

�

dx2
∫ t

−∞
dt2K2(x, x1, x2)V (x1, t1)V (x2, t1)

−
∫

�

dx1
∫

�

dx2
∫

�

dx3
∫ t

−∞
dt1

∫ t

−∞
dt2

×K3(x, x1, x2, x3)V (x1, t1)V (x2, t1)V (x3, t2)

+
∫

�

dx1
∫

�

dx2
∫

�

dx3
∫

�

dx4
∫ t

−∞
dt1

∫ t

−∞
dt2

×K4(x, x1, x2, x3, x4)V (x1, t1)V (x2, t1)V (x3, t2)V (x4, t2)

(12)

with kernels

K1(x, x1) =
n1∑

k1=1

σ
(1)
k1

τ (1) V
(1)+
k1 (x1)V (1)

k1 (x) +
n2∑

k2=1

σ
(2)
k2

τ (2) V
(2)+
k2 (x1)V (2)

k2 (x)

K2(x, x1, x2) =
n2∑

k2=1

n2∑
j2=1

ρ
(2)
k2j2

τ (2) V
(2)+
k2 (x1)V (2)+

j2 (x2)V (2)
k2 (x)

K3(x, x1, x2, x3) =
n1∑

k1=1

n1∑
j1=1

m2∑
l2=1

σ
(2)
l2 r(1)k1j1l2
τ (1)τ (2) V (1)+

k1 (x1)V (1)+
j1 (x2)V (2)+

l2 (x3)V (1)
k1 (x)

K4(x, x1, x2, x3, x4) =
n1∑

k1=1

n1∑
j1=1

m2∑
l2=1

n2∑
j2=1

r(1)k1j1l2ρ
(2)
l2j2

τ (1)τ (2) V (1)+
k1 (x1)V (1)+

j1 (x2)V (2)+
l2 (x3)

×V (2)+
j2 (x4)V (1)

k1 (x) .



beim Graben and Hutt EPJ Nonlinear Biomedical Physics 2014, 2:4 Page 9 of 17
http://www.epjnonlinearbiomedphys.com/content/2/1/4

Here, the V (ν)

kν
(x) denote the kν-th saddle in the ν-th level of the hierarchy (containing

nν stationary states). Saddles are chosen again in such a way that they form a system of
bi-orthogonal modes V (ν)+

kν
(x) whose behavior is determined by Lotka-Volterra dynam-

ics with growth rates σ
(ν)

kν
> 0 and time-dependent interaction weights ρ

(ν)

kν jν (t) > 0,
ρ

(ν)

kνkν
(t) = 1 that are given by linear superpositions of templates r(ν)

kν jν lν+1
. Additionally, τ (ν)

are the characteristic time scales for level ν. Levels are temporally well separated through
τ (ν) 	 τ (ν+1) [35].
Interestingly these kernels are time-independent. Since neural field equations can be

written in the same form as Eq. (12), this result shows that hierarchies of Lotka-Volterra
systems are included in the neural field description. Again we point out that the resulting
kernels are linear combinations of dyadic products as introduced in Eq. (3), see also the
work of Veltz and Faugeras [26].

Discussion
This study considers spatially heterogeneous neural fields describing the mean poten-
tial in neural populations according to the Amari equation [2]. To our best knowledge
this work is one of the first deriving the implicit conditions for stationary solutions and
identifying the corresponding stability constraint as the Hammerstein integral equation.
Moreover, as one of the first studies our work derives conditions for the linear stability
of such stationary solutions and derives an analytical expression for stability subjected to
the properties of heterogeneous synaptic interaction. The analytical results are comple-
mented by numerical simulations illustrating the stability and instability of heterogeneous
stationary states. We point out that the results obtained extend previous studies both
on homogeneous neural fields and heterogeneous neural fields as other studies in this
context have done before [21].
By virtue of the heterogeneity of the model, it is possible to consider more com-

plex spatiotemporal dynamical behavior than the dynamics close to a single stationary
state. We show how to construct hierarchical heteroclinic sequences built of multi-
ple stationary states each exhibiting saddle node dynamics. The work demonstrates
in detail how to construct such sequences given the stationary states and their sad-
dle node dynamics involved. Motivated by a previous study on hierarchical heteroclinic
sequences [25,34], we constructed such sequences in heterogeneous neural fields of the
Amari type. Our results indicate that such a hierarchy may be present in a single het-
erogeneous neural field whereas previous studies [25,34] consider the presence of several
neural populations to describe heteroclinic sequences. The kernels obtained from hete-
roclinic saddle node dynamics are linear superpositions of tensor product kernels, known
as Pincherle-Goursat kernels in the literature [26].

Conclusion
The present work is strongly related to the literature hypothesizing the presence of chaotic
itinerant neural activity, cf. previous work by [36,37]. This concept of chaotic itinerancy
is attractive but yet lacking a realistic neural model. We admit that the present work
represents just a first initial starting point for further model analysis of sequential neu-
ral activity in heterogeneous neural systems. It opens up an avenue of future research
and promises to close the gap between the rather abstract concept of sequential, i.e.
temporally transient, neural activity and corresponding mathematical neural models.
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Methods
Stationary states and their stability

In order to learn more about the spatiotemporal dynamics of a neural field, in general it is
reasonable to determine stationary states and to study their linear stability. This already
gives some insight into the nonlinear dynamics of the system. Since the dynamics depends
strongly on the interaction kernel and the corresponding stationary states, it is necessary
to work out conditions for the existence and uniqueness of stationary states and their
stability.

Analytical study

For stationary solutions, the left hand side of Eq. (1) vanishes and we obtain the
Hammerstein equation (2) [29]. It has a trivial solution V0(x) = 0 and further non-trivial
solutions V0(x) �= 0 under certain conditions. The existence and number of solutions of
Eq. (2) depends mainly on the operatorA = I +KF [38] and its monotonicity [39], with
the unity operator I , the linear integral operator

Ku =
∫

�

K(x, y)u(y)dy

and the Nemytskij operator Fu(x) = S(u(x)). For instance, a simple criterion for the
existence of at least a single non-trivial solution is the symmetry and positive definite-
ness of the kernel K(x, y) and the condition S(u) ≤ C1u + C2 [29] . Moreover previous
studies have proposed analytical [40] and numerical [41] methods to find solutions of the
Hammerstein equation (2).
To illustrate the non-uniqueness of solutions of the Hammerstein equation, let us

expand the stationary solution into a set of bi-orthogonal spatial modes {φn(x)}, {ψn(x)}

V0(x) =
∞∑
n=0

Vnφn(x) =
∞∑
n=0

Unψn(x)

with constant coefficients Vn, Un and

(ψm,φn) =
∫

�

ψm(x)φn(x) dx = δn,m .

with the Kronecker symbol δn,m. Then the Hammerstein equation recasts to

Vm = S0κm + S′
∞∑
n=0

Km,nVn + fm ({Vn}) (13)

with

κm = (ψm,K1) , Km,n = (ψm,Kφn) , fm = (
ψm,Kf

)
and

f (x) =
∞∑
p=2

1
p!

∂pS(z)
∂zp

∣∣∣
z=0

( ∞∑
n=0

Vnφn(x)
)p

.

Since fm is a nonlinear function of Vn, Eq. (13) has multiple solutions {Vn} for a given
bi-orthogonal basis. Hence, V0(x) may not be unique.
Considering small deviations u(x, t) = V (x, t) − V0(x) from a non-trivial stationary

state V0(x), these deviations obey the linear equation (6) with L(x, y) = K(x, y)S′(y) and
S′(y) = dS[V0(y)] /dV0(y).



beim Graben and Hutt EPJ Nonlinear Biomedical Physics 2014, 2:4 Page 11 of 17
http://www.epjnonlinearbiomedphys.com/content/2/1/4

A solution of (6) is then u(x, t) = exp(λt)e(x), λ ∈ C with mode e(x). Inserting this
solution into Eq. (6) yields the continuous spectrum of the corresponding linear operator
L(x, y) determined implicitly by the eigenvalue equation

(λ + 1)e(x) =
∫

�

L(x, y)e(y) dy (14)

Under the above assumption of a dyadic product kernel (3), the eigenfunctions {ek(x)}
of the kernel L(x, y), defined through

εkek(x) =
∫

�

L(x, y)ek(y) dy , (15)

with eigenvalues εk = λk + 1 ∈ C form an orthonormal system with respect to the scalar
product

〈u, v〉S =
∫

�

u(x)v(x)S′(y) dy (16)

with weight S′(y). This follows from the dyadic product kernel (3) through∫
�

L(x, y)ek(y) dy =
∫

�

K(x, y)S′(y)ek(y) dy

=
∫

�

V0(x)V0(y)S′(y)ek(y) dy

= V0(x)
∫

�

V0(y)ek(y)S′(y) dy

εkek(x) = V0(x)〈V0, ek〉S . (17)

From (17) we deduce two important results:

• a certain eigenmode ek0(x) is proportional to the stationary state V0(x) with scaling
factor 〈V0, ek0〉S/εk0 , and

• other eigenmodes in the eigenbasis ek �=k0(x) are orthogonal to V0(x) yielding
〈V0, ek〉S = εk = 0.

Hence for dyadic product kernels (3) the spectrum of L includes one eigenmode with
eigenvalue ε1 �= 0, i.e. λ1 �= −1, while all other eigenmodes are stable with εk �=1 = 0
and thus λk �=1 = −1. Therefore, a non-trivial stationary state could become either an
asymptotically stable fixed point, i.e. an attractor, for εn < 1, for all n, or a saddle with a
one-dimensional unstable manifold, for ε1 > 1 and εn�=1 < 1 (neglecting the singular case
ε1 = 1).
Finally we have to justify the necessary condition (5) which follows from 0 < S(x) < 1

and

1 =
∫

�

V0(y)S[V0(y)] dy <

∫
�

V0(y) dy ,

inserted into the Hammerstein equation (2) for a dyadic product kernel (3).

Numerical study

In order to investigate stationary states of the Amari equation numerically, we choose a
finite one-dimensional spatial domain of length L and discretize it into a regular grid of n
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intervals with grid interval length �x = L/n. Then the kernel function is K(x = n�x, y =
m�x) = Knm/�x and Eq. (1) reads

∂Vi(t)
∂t

= −Vi(t) +
n∑

j=1
KijS[Vj(t)] (18)

where Vn(t) = V (n�x, t). The corresponding Hammerstein equation (2) is given by

V0,i =
n∑

j=1
KijS[V0,j] . (19)

Taking into account the insight from the discussion of Eq. (3) and its consequences for
the eigenmodes, we have chosen the spatial kernel to

Kij = V0,iV0,j . (20)

We employ an Euler-forward integration scheme for the temporal evolution with
discrete time step �t = 0.05.
We render the stationary state random by adding the noise term ηi which are random

numbers taken from a normal distribution with zero mean and unit variance. We point
out that we choose ηi such like | ∑n

i=1 ηi| < 0.05 in order to not permit an amplitude
increase in the dynamics by noise, but just as a modulation. The sigmoid function is cho-
sen as S(V ) = 1/(1 + exp(−α(V − θ))) parameterized by the slope parameter α and the
mean threshold θ .

Heteroclinic orbits

The general neural field equation (10) supplies the Amari equation (1) as a special case for
G(t) = e−t�(t) (�(t) as Heaviside’s step function). Then Q = ∂t + 1 is the Amari oper-
ator for the Green’s function G(t). For second-order synaptic dynamics [42] and for the
filter properties of complex dendritc trees [43], more complicated kernels or differential
operators, respectively, have to be taken into account.
As a first step for constructing heteroclinic sequences for (1) or (10), we expand the

nonlinear transfer function S in Eq. (11) into a power series about a certain state V̄ (s) [15],

S[V (s)] =
∞∑
n=0

S(n)(s)
n!

(V (s) − V̄ (s))n

=
∞∑
n=0

S(n)(s)
n!

(−1)n(V̄ (s) − V (s))n

=
∞∑
n=0

S(n)(s)
n!

(−1)n
n∑

k=0
(−1)k

(
n
k

)
V̄ (s)n−kV (s)k

=
∞∑
n=0

n∑
k=0

(−1)n+k S(n)(s)
n!

(
n
k

)
V̄ (s)n−kV (s)k
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Inserting V (s) from Eq. (11) yields

S[V (s)] =
∞∑
n=0

n∑
k=0

(−1)n+k S(n)(s)
n!

(
n
k

)
V̄ (s)n−k

(∫
M
H(s, s′)S[V (s′)] ds′

)k

=
∞∑
n=0

n∑
k=0

(−1)n+k S(n)(s)
n!

(
n
k

)
V̄ (s)n−k

×
∫
M

· · ·
∫
M
H(s, s1)H(s, s2) . . .H(s, sk)

×S[V (s1)] S[V (s2)] . . . S[V (sk)] ds1 · · · dsk
=

∞∑
n=0

n∑
k=0

(−1)n+k S(n)(s)
n!

(
n
k

)
V̄ (s)n−k

×
∫
M

· · ·
∫
M

k∏
j=1

H(s, sj)S[V (sj)] dsj .

By eliminating the nonlinearities S[V (sj)] using the power series above again, we get

S[V (s)] =
∞∑
n=0

n∑
k=0

(−1)n+k S(n)(s)
n!

(
n
k

)
V̄ (s)n−k

×
∫
M

· · ·
∫
M

k∏
j=1

H(s, sj)

⎛
⎝ ∞∑

nj=0

S(nj)(sj)
nj!

(V (sj) − V̄ (sj))nj

⎞
⎠ dsj .

Inserting this expression into Eq. (11) leads to a generalized Volterra series

V (s) = H0(s)

+
∞∑

m=1

1
m!

∫
M

· · ·
∫
M
Hm(s, s1, . . . , sm)V (s1) . . .V (sm) ds1 · · · dsm (21)

with a sequence of integral kernels Hm that can be read off after some further tedious
rearrangements [44].

One-level hierarchy

In a previous work, we have derived a one-level hierarchy of stable heterogenic
sequences [44], which we briefly recapitulate here. We assume a family of n stationary
states Vk(x), 1 ≤ k ≤ n that are to be connected along a heteroclinic sequence. Each state
is assumed to be realized by a population in the neural field governed by (10), that is char-
acterized by a population activity αk(t) ∈[ 0, 1]. Then the overall field quantity is obtained
through an order parameter expansion [15,45]

V (x, t) =
n∑

k=1
αk(t)Vk(x) . (22)

These population amplitudes result from a winnerless competition in a generalized
Lotka-Volterra system approximating a Wilson-Cowan model [46,47]

dξk(t)
dt

= ξk(t)

⎛
⎝σk −

n∑
j=1

ρkjξj(t)

⎞
⎠ (23)

αk(t) = ξk(t)
σk
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with growth rates σk > 0, and interaction weights ρkj > 0, ρkk = 1, that are trained by
the algorithm of [27] and [28] for the desired sequence of transitions.
For the following construction, we also assume that the system of stationary states

{Vk(x)} is linearly independent such that there is a bi-orthogonal system {V+
k (x)}, obeying

∫
�

V+
j (x)Vk(x) dx = δjk . (24)

Then, we obtain from (22)

∫
�

V+
j (x)V (x, t) dx =

n∑
k=1

αk(t)
∫

�

V+
j (x)Vk(x) dx

=
n∑

k=1
αk(t)δjk

and hence

αj(t) =
∫

�

V+
j (x)V (x, t) dx

ξj(t) = σj

∫
�

V+
j (x)V (x, t) dx . (25)

Next, we take the derivation of (22) with respect to time t, by exploiting (23)

∂V (x, t)
∂t

=
∑
k

1
σk

dξk
dt

Vk(x)

=
∑
k

1
σk

⎡
⎣ξk

⎛
⎝σk −

∑
j

ρkjξj

⎞
⎠

⎤
⎦Vk(x)

=
∑
k

ξkVk(x) −
∑
kj

ρkj

σk
ξkξjVk(x) . (26)

Adding (22), we obtain

∂V (x, t)
∂t

+ V (x, t) =
∑
k

ξkVk(x) −
∑
kj

ρkj

σk
ξkξjVk(x) +

∑
k

1
σk

ξkVk(x)

=
∑
k

(
1 + 1

σk

)
ξkVk(x) −

∑
kj

ρkj

σk
ξkξjVk(x) (27)

from which we eliminate all occurrences of ξ by means of (25). This yields

∂V (x, t)
∂t

+ V (x, t) =
∑
k

(
1 + 1

σk

)
σk

∫
�

V+
k (y)V (y, t)Vk(x) dy

−
∑
kj

ρkj

σk
σkσj

∫
�

∫
�

V+
k (y)V (y, t)V+

j (z)V (z, t)Vk(x) dy dz

=
∫

�

∑
k

(σk + 1)V+
k (y)Vk(x)V (y, t) dy (28)

−
∫

�

∫
�

∑
kj

ρkjσjV+
k (y)V+

j (z)Vk(x)V (y, t)V (z, t) dy dz .
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Moreover, the nonlinear spatial integral transformation in the Amari equation (1) may
be written as a generalized Volterra series (21)

J [V (·, t)] (x) = K0(x)

+
∞∑

m=1

1
m!

∫
�

· · ·
∫

�

Km(x, y1, y2, . . . , ym)V (y1, t)V (y2, t) . . .V (ym, t) dy1 dy2 · · · dym .

(29)

Comparison of the first three terms with (28) yields the result (9).

Multi-level hierarchy of heteroclinic sequences

Here we assume that the SHS are given by (possibly infinitely many) generalized Lotka-
Volterra systems

τ (ν)
dα(ν)

kν
(t)

dt
= α

(ν)

kν
(t)

⎛
⎝σ

(ν)

kν
−

nν∑
jν=1

ρ
(ν)

kν jν (t)α
(ν)

kν
(t)

⎞
⎠ (30)

with growth rates σ
(ν)

kν
> 0, and time-dependent interaction weights ρ

(ν)

kν jν (t) > 0,
ρ

(ν)

kνkν
(t) = 1. Again, ν ∈ N indicates the level within the hierarchy, nν is the number of

stationary states and τ (ν) represents the characteristic time scale of that level. Levels are
temporally well separated through τ (ν) 	 τ (ν+1) [35].
Following [34], the population amplitudes α

(ν)

kν
(t) of level ν prescribe the control

parameters of the higher level ν − 1 by virtue of

ρ
(ν)

kν jν (t) =
mν+1∑
lν+1=1

α
(ν+1)
lν+1

(t)r(ν)

kν jν lν+1
(31)

where the constants r(ν)

kν jν lν+1
serve as parameter templates.

Finally, the amplitudes α
(ν)

kν
(t) recruit a hierarchy of modes V (ν)

kν
(x) in the neural field

such that

V (s) = V (x, t) =
∞∑

ν=1

nν∑
kν=1

α
(ν)

kν
(t)V (ν)

kν
(x) . (32)

Assuming a system of bi-orthogonal modes V (ν)+
kν

(x) with∫
�

V (ν)+
kν

(x)V (ν)
jν (x) dx = δkν jν (33)

we obtain from (32)

α
(ν)

kν
(t) =

∫
�

V (ν)+
kν

(x)V (x, t) dx . (34)

Next we convert the Lotka-Volterra differential equations (30) into their corresponding
integral equations by formally integrating

α
(ν)

kν
(t) = 1

τ (ν)

∫ t

−∞
α

(ν)

kν
(tν)

⎛
⎝σ

(ν)

kν
−

nν∑
jν=1

ρ
(ν)

kν jν (tν)α
(ν)
jν (tν)

⎞
⎠ dtν (35)

and obtain a recursion equation after inserting (31)

α
(ν)

kν
(t) = 1

τ (ν)

∫ t

−∞
α

(ν)

kν
(tν)

⎛
⎝σ

(ν)

kν
−

nν∑
jν=1

mν+1∑
lν+1=1

r(ν)

kν jν lν+1
α

(ν+1)
lν+1

(tν)α(ν)
jν (tν)

⎞
⎠ dtν . (36)
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Eventually, we insert all results of the recursion of (36) into the field equation (32) and
eliminate the amplitudes α

(ν)

kν
(t) bymeans of (34) in order to get a series expansion ofV (s)

in terms of spatiotemporal integrals. This seriesmust equal the generalized Volterra series
(21), such that the kernel H(s, s′) can be reconstructed to solve the neural field inverse
problem [44]. For more mathematical details on the derivation of the two-level hierarchy,
see Additional file 1.

Additional file

Additional file 1: Mathematical details on the two-level hierarchy.
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