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Abstract
Background: The recent experimental technique of chromosome conformational
capture gives an in-vivo access to pairwise contact frequencies between genomic loci.
We present how network analysis can be exploited to extract information from
genome-wide contact maps.

Methods: We recently proposed to use graph distance for deriving a complete
distance matrix from sparse contact maps. Completed with multidimensional scaling
(MDS), this network-based method provided a fast algorithm, ShRec3D, for
reconstructing 3D genome structures.

Results: We here develop an extension of this algorithm, by devising a tunable variant
of the graph distance and introducing an alternative implementation of
multidimensional scaling. This extended algorithm is shown to be more flexible so as
to accommodate additional experimental constraints, focus on specific spatial scales,
and produce tractable representations of human data.

Conclusions: Network representation of genomic contacts offers a path where
physical and systemic approaches are joined to unravel the biological role of the 3D
genome structure.
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Background
A recent experimental technique, chromosome conformation capture, gives access to
pairwise contacts between genomic sites in populations of living cell nuclei [1–3]. Com-
pleted with observations obtained by imaging techniques, it provides increasing evidence
of the functional importance of the 3D genome structure, e.g. in the regulation of gene
expression [4, 5]. Conformation capture data are usually processed into contact maps.We
explore the benefits of considering a contact map as the adjacencymatrix of an undirected
graph, accordingly termed a contact network.
A first interest, reviewed in Section “Contact maps and contact networks”, is to use

the concepts developed in statistical physics for complex network analysis [6, 7]. This
path has already been explored to characterize the native structure of proteins [8]. In the
genomic context, the challenge lies in the large size of the contact maps, their sparseness,
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and the fluctuating nature of the genome conformation, averaged over cells and time in
the experiment.
A second interest, presented in Section “3D genome structure reconstruction”, is to

use the contact network representation to compute the graph distance between any pair
of genomic sites, including those displaying no (or very few) contact(s). It has been
exploited in [9] to devise a fast reconstruction algorithm, named ShRec3D for Shortest-
path 3D Reconstruction to underline the importance of taking graph distance as a starting
point of multidimensional scaling methods for reconstructing the underlying 3D genome
structure.
We propose in Section “Results and discussion: an extension of ShRec3D for human

genome” an extension of this reconstruction algorithm, involving a tunable graph distance
and two different MDS implementations. In the line of experiments using fluorescence
in-situ hybridization (FISH) data, which evidenced a power-law correlation between con-
tact frequencies and measured distances [2], we explore the relationships between the
contact frequencies, the graph distances, and the distances within the reconstructed 3D
structures. We dissect the transformations achieved by the different steps of the algo-
rithm and benchmark its possible variants. As a result, we identify a trade-off between
controlling the reconstruction at small scales or at large scales, and propose opera-
tional options for exploiting real data, typically human data in normal and pathological
situations.

Contact maps and contact networks
Chromosome conformation capture

Chromosome conformation capture is an experimental protocol, implemented in a pop-
ulation of living cell nuclei, in which genomic sites are crosslinked pairwise when they
are close enough in the nuclear space. These crosslinks are mediated by DNA-bound
proteins, which are sensitive to the chemical (formaldehyde) used in the protocol. Then
steps of restriction digestion, ligation, inverse crosslink and sequencing allow the iden-
tification of contacting genomic fragments, producing for each pair (i, j) a number of
reads Cij. We focus on the analysis of genome-wide conformation capture data, known
as Hi-C data [2]. This high-throughput technique has a limited resolution of several kilo-
bases (kbs), down to fragments of 1kb in a recent implementation [3]. Data are often
coarse-grained, by aggregating genomic fragments into larger bins, in order to reach good
statistics. Numbers of reads are then processed to remove experimental biases and filter
out noise. The resulting components are either thresholded to produce a binary contact
matrix, as sketched in Fig. 1a, or normalized into contact frequencies [10]. Both options
preserve the symmetry of the matrix and produce a contact map F.

From contact maps to contact networks

The most standard approach is the direct analysis of contact maps using various statisti-
cal tools, e.g. contact density, Principal Component Analysis or motif finding [2, 3, 11].
An alternative approach is to consider a contact map F as the adjacency matrix of an
undirected network. There are slightly different ways to implement this general idea, e.g.
considering a network with multiple edges or with weighted edges. The simplest case of
a binary contact map is presented on Fig. 1b, using a network drawing minimizing the
number of crossings between edges in the plane of the figure. Noticeably, labeling of the
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Fig. 1 Scheme of a contact map and associated contact network. a Each axis represents the linear position
along the genome. A black pixel (i, j) and the symmetric pixel (j, i) correspond to a contact between the
genomic sites i and j, each defined at a resolution of a few kbs, depending on the experimental protocol and
possibly on a coarse-graining achieved in processing the raw data. b Considering the contact map as an
adjacency matrix defines the contact network, whose nodes are the genomic sites. One contact and the
corresponding undirected edge are underlined in red. The node labels are prescribed by the linear ordering
along the genome

nodes in such networks is not purely conventional, like in most complex networks, but
prescribed by their linear ordering along the genome.
Contact networks are spatially embodied networks with steric constraints on the node

degrees: a node cannot establish a contact with an unlimited number of other nodes,
exactly like a city cannot be connected by direct highways to an unlimited number of
other cities. As such, they are not expected to satisfy the small-world property. These
constraints are partly alleviated in Hi-C experiments done on cell populations, where the
contact network originates from an average contact map, derived from a huge number of
individual conformations.
Although such networks are sometimes called interaction networks [12], it should be

noted that a contact only reflects a spatial proximity at the time of the experiment. It may
result from random thermal motion of DNA, and does not necessarily imply a specific
biochemical or physical interaction between the genomic sites. Only a special experi-
mental protocol (chromatin interaction analysis using paired end tags, ChIA-PET, [13]),
designed to extract the contacts mediated by a given protein, e.g. a polymerase, gives
access to chromatin interaction networks [14].
Network representation can be exploited in different ways in the context of genomic

studies. We present in the next section a short review of the alternative approaches and
points of view. Our exploitation of contact networks for 3D genome reconstruction will
appear to be quite novel and unrelated to previous works.

Contact network analysis of Hi-C maps: a short review

The network view of contact maps already gave systemic insights on the genome
organization in the nuclear space.
In [15], the authors chose a network representation in which each observed contact

is associated with an edge. Nodes are thus related by multiple edges, as many as the
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number of reads recorded in the experiment. By implementing a rewiring procedure at
fixed degrees, they showed that the human contact network is different from a random
graph, in particular as regards the histogram of the number of contacts.
In [12], the authors computed five graph-topological measures of the intra-

chromosomal contact network: diameter, degree distribution, betweenness centrality,
clustering coefficient and Jaccard index (relative number of neighbors shared by a pair
of nodes). They actually used scale-dependent analogs of the standard notions, related to
the diffusion kernel exp[β(F − K)] (where K is the degree matrix) and presumed to cap-
ture network characteristics at different ranges of organization when the parameter β is
varied [16]. Identifying each gene with the fragment containing its transcriptional
start site, they showed a correlation between co-expression of genes and their 3D
co-localization, that was proposed as a prediction tool.
In [17], a network approach of a human contact map at a resolution of 100kb has been

developed to analyze the relationship between replication timing and genomic contacts.
Replication origins located at the border of replication domains, termed master repli-
cation origins, are shown to correspond to nodes of maximal network centrality. This
feature is observed for three network centralities (degree, betweenness and eigenvector
centralities) in both the unweighted contact network and the network where edges are
weighted by the number of reads.
Louvain algorithm devised to detect graph communities has been applied to the contact

network of metagenomes, in order to identify the constituting genomes [18].
In [14], using a ChIA-PET protocol specifically targeting contacts involving a poly-

merase, the authors found that 40 % of the total genomic elements involved in chromatin
interactions converged to a giant, scale-free-like, hierarchical network organized into
chromatin communities, with a negative correlation between the degree and the clus-
tering coefficient. In the context of genome-wide association studies, they observed
that hubs of this transcription-associated interaction network lack disease-associated
single-nucleotide polymorphisms.

3D genome structure reconstruction
The challenge

Beyond statistical analyses, another direction for exploiting contact maps is to recon-
struct the underlying 3D genome structures and visualize the corresponding shapes in
the 3D space. An issue is the large size of genomic contact maps, which requires fast
reconstruction algorithms. Existing methods for reconstructing the native structure of a
protein from its contact map, e.g. by targeted growth [19], are limited to a few hundreds
of elements at the very most, hence do not apply to the large Hi-C contact maps. Standard
reconstruction methods for genomic data are based on iterative structure optimization
until experimental contacts are matched [20], and they are also limited to a small number
of sites.
Another issue lies in the fact that not all the contacts are detected. The absence of reads

for a pair of sites does not assess, and should not be handled as, an absence of contact.
In what follows, we consider binary contact maps only for explanation and illustration

purposes, as in Fig. 1, and perform all the analyses with continuously-valued contact fre-
quencies, so as to avoid the choice of a threshold and fully exploit the quantitative nature
of Hi-C data.
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From contact maps to distance matrices

The standard method to derive spatial distances from conformational capture data is to
consider that distances are inversely proportional to numbers of contacts and to associate
a distance Lij = 1/Fij to the pair of sites (i, j) [21]. A difficulty arises at high resolution
(typically less than 100 kb) due to the sparseness of the contact map F, in which a lot
of components vanish. The corresponding distance matrix would thus contain a lot of
infinite components. Nonvanishing but very small values of Fij are also problematic, in
giving a very large value 1/Fij which does not correspond to the average distance between
the sites i and j. Moreover, such a definition does not satisfy the triangular inequality, i.e.
L is not a distance matrix.
Considering the contact map as the adjacency matrix of a network, we proposed to

associate to a pair of sites (i, j) the distance Dij obtained by computing their graph dis-
tance, that is, the minimal number of edges in a path relating the nodes [9, 22]. This
definition applies to any pair of sites, including those displaying no significant contact,
hence provides a complete distance matrix D. This procedure in particular circumvents
experimental limitations preventing to detect all the contacts.
However, the plain graph distance is too rough since it treats equally all the edges of the

network, while a high contact frequency Fij reflects a close proximity of the sites i and
j. Accordingly, we have endowed each contact-associated edge with a length Lij = 1/Fij.
The components of L are no longer used as distances, but as auxiliary weights involved in
computing the path lengths, instead of simply counting a number of edges. This weighting
does not change the fact that the shortest-path distance Dij is a true distance, satisfying
the triangular inequality.

ShRec3D: implementing classical multidimensional scaling on graph distances

To achieve 3D genome reconstruction, we proposed a fast algorithm, termed ShRec3D for
shortest-path 3D reconstruction [9], Fig. 2a. It starts with the above-described derivation
of the shortest-path distance matrix D from the contact map F, Fig. 2b.
The next step is the computation of the so-called metric matrix M, related to D by

algebraic relationships (see Methods). In ideal situations, where the distance matrix com-
ponents are the actual Euclidean distances between the points of 3D structure, M is
semidefinite positive of rank equal to the underlying topological dimension, namely 3;
a theorem from distance geometry then ensures that it coincides with the Gram matrix
G (matrix of scalar products) of the structure [23], which is reversibly related to its 3D
coordinates. When starting from experimental data, D is marred by errors, M is not
semidefinite positive and the theorem no longer applies. Moreover, D is reconstructed
from an average contact map, i.e. from a superposition of structures, which also reflects
in the presence of more than 3 nonvanishing eigenvalues. Classical MDS cures both prob-
lems in a simple way, by considering the truncation G of rank 3 obtained by keeping the
largest three eigenvalues of M. The associated eigenvectors yield the 3D coordinates V
(see Methods).
The spectrum of M reflects up to what point the matrix D is close to the Euclidean

distance matrix of a single 3D structure. MDS truncation of M enforces the existence
of an underlying 3D structure, which is an optimal approximation in the sense that the
quadratic error between the experimental distances D and the distances R in the recon-
structed structure is minimal [24]. The quality of this approximation can be checked on
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Fig. 2 Principle of ShRec3D reconstruction algorithm. a Sketch of the flowchart of the algorithm. The starting
point is the contact map F, with either binary or normalized components. It defines a contact network, where
each edge (i, j) is given a length Lij , equal to 1/Fij in the original version [9] and extended into a tunable
relationship Lij = F−α

ij with parameter α. The shortest-path distances between the nodes, illustrated in (b),
produces a complete distance matrix D. Then a metric matrixM is derived using simple algebraic formulas.
Classical multidimensional scaling (MDS, step singled out by green arrows) amounts to a truncation ofM into
a semidefinite positive matrix G of rank 3, supported by the spectrum ofM, in (c). G is the Gram matrix of the
desired 3D structure. The coordinate vectors V are deduced from the 3 nonvanishing eigenvalues and
corresponding eigenvectors of G. The 3D structure obtained with α = 1 is presented in (d). In what follows
we investigate the relationships (sketched as blue arrows) between F and either the graph distances D or the
reconstructed distances R for various values of α

the spectrum of M, displaying three isolated positive eigenvalues while the remaining
part of the spectrum is concentrated around 0, Fig. 2c. It is essential for the quality of the
MDS approximation that D is a true distance matrix, satisfying the triangular inequality.
In contrast, it has been checked in [9] that applying MDS to the matrix L (instead of D)
gives very poor results, the reconstructed structure being then almost uncorrelated with
the actual one.
Since the elements of D take dimensionless values, the 3D structure is obtained up to

a scale transformation; only the ratio of the distances is meaningful. The reconstructed
distances R could be calibrated with respect to the size of the nucleus. As we focus only on
the topology of the 3D genome structure, we kept dimensionless values for the distances,
Fig. 2d.

Results and discussion: an extension of ShRec3D for human genome
A guideline based on fluorescence in-situ hybridization(FISH) experiments

FISH protocol associates fluorescent tags to a few specific genomic sites. It allows the
accurate measurement in a population of fixed cells of the spatial distances between these
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sites and their distribution. However, the number of investigated sites is very limited, in
contrast to the genome-wide coverage permitted by conformational capture techniques.
FISH experiments have been used to check that conformational capture actually provides
information on in-vivo distances. They provide the only independent constraint on the
3D reconstruction from Hi-C maps.
A negative correlation has been observed for the sites tagged by FISH between their

distance dij (average over numerous single cells) and the number Cij of Hi-C reads, or
equivalently the contact frequency Fij [2]. This correlation was the argument for using L
as a proxy for the 3D distances. In the experimental situation considered in [2], it could be
satisfactorily summarized in a heuristic power-law dij ∼ F−αFISH

ij , with a (non universal)
exponent αFISH ≈ 0.227, Fig. 3.
In the analyses that follow, we used Hi-C data obtained in human cells (lymphoblas-

toids) as in [2], Fig. 3, but with a higher resolution [3], Fig. 4a.

Tunable graph distances

In the line of the power-law correlation observed in FISH data, we endow each contact-
associated edge with a length Lij ∼ F−α

ij , depending on a tunable parameter α. This
extension, proposed for L used as an ansatz for the distances [25, 26], is here integrated
in our network-based computation of the distances. We investigated the influence of the
value of α on the properties of the shortest-path distance matrix D and its relationship
with F (short blue arrow in Fig. 2a), with two extreme cases α = 0.2 (the rounded value of
the exponent observed experimentally in the above-described situation) and α = 1 (the
value adopted in the original algorithm).
By definition, the shortest-path distanceDij is always smaller or equal to the edge length

Lij, as can be seen on Fig. 4b. It is expected —and intended— that D does not rely on
low contact frequencies, associated with long edges in the contact network. Figure 4b
shows that the difference between D and L is indeed more marked for smaller contact

Fig. 3 Contacts recorded in a FISH experiment. Fluorescence in-situ hybridization (FISH) protocol allows one
to measure the 3D distance, inside living cells, between a few specific genomic sites tagged with fluorescent
probes. The figure presents a log-log scatter plot of the number C of observed contacts (horizontal axis, Hi-C
data) between the sites investigated using FISH and their 3D distance d (vertical axis, FISH data, in microns).
These experimental data are consistent with a power-law relation dij ∼ F−0.227

ij . From [2], Figure S3, with
permission
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Fig. 4 Analysis of the weighted graph distance. a Hi-C contact map of a 10Mb-fragment of human
chromosome 1 (1kb-resolution data from [3] binned at a resolution of 10kb, axes in Mb), in the form of a heat
map where the color code represents the contact frequency (− log10 units). b Log-log scatter plot of the
shortest-path distances Dij with respect to the contact frequencies Fij , for two values α = 0.2 (top) and α = 1
(bottom) of the exponent α involved in the prescription of the edge length. The upper boundary of the cloud
of points is a line of slope −α, corresponding to the pairs of sites for which the direct edge (i, j) of length Lij is
the shortest path. Minus the slope of the red line gives the exponent αSh of the best power-law fit Dij ∼ F−αSh

ij .
c Increase of the percentage NSh of pairs of sites for which the direct connection (i, j) is not the shortest path,
when α increases. d Exponent αSh as a function of α; the dashed blue line indicates the diagonal αSh = α

frequencies, i.e. larger distances. We quantified this feature by the percentageNSh of pairs
(i, j) with nontrivial shortest-path distance Dij < Lij. The pairs of sites contributing to
NSh are those with low contact frequencies, for which the shortest-path travels through
different and shorter connections than the edge (i, j). When α increases, the discrep-
ancy between L and D is observed to increase, as illustrated by the two panels of Fig. 4b.
This trend is assessed by plotting the increase of the percentage NSh when α increases,
Fig. 4c. The correlation between the contact frequency Fij observed for a pair of sites and
their shortest-path distance Dij can be summarized in a scaling law, with an exponent αSh
(minus the slope of the red lines in Fig. 4b). The dependence of αSh as a function of α is
shown on Fig. 4d. A crossover is observed at a value α ≈ 0.2.
Overall, the improvement brought by using shortest-path distances D as an input to

MDS is more important for larger distances and larger values of α. However, choosing
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a large value of α is not necessarily the best choice: in this regime, the distances D are
derived mainly from a few large contact frequencies measured in the Hi-C experiment
while less frequent contacts do not contribute, which filters out noise and unreliable
recordings but possibly also relevant information. Also, the scaling of the distances with
respect to the contact frequencies is modified by the shortest-path computation, and
Fig. 4d provides a calibration curve for the considered data, allowing one to control αSh
by a proper choice of α. Further analysis is presented below, with a focus on the extreme
values α = 0.2 and α = 1.

Effect of the multidimensional scaling

We further explored the relationship between the reconstructed distances R and the con-
tact frequencies F (long blue arrow in Fig. 2a) as a function of α. We moreover compared
two versions of MDS, corresponding to different optimization criteria hence different
approximations. Classical MDS corresponds to the minimization of

∑
i,j(Dij − Rij)2. The

strength of this method is to reduce to the determination of the three first eigenvectors of
the metric matrix M, as explained above. Its weakness is the low constraint on small dis-
tances, since minimizing the error is achieved mainly by controlling the large distances.
This dominance of large distances can be corrected by considering the relative error [25],
leading to the so-called (nonclassical) metric MDS (see Methods). Importantly, both clas-
sicalMDS andmetricMDS are applied to the shortest-path distancematrixD. In contrast,
MDS applied to L is highly unstable, due to the treatment of infinite or abnormal compo-
nents of L and the fact that L is not a distance matrix [9]. As regards computational time,
nonclassical MDS starts from the classical MDS solution hence takes more time. At larger
sizes, their computational performances converge, due to the fact that the (common)
limiting step is the computation of shortest paths, see Additional file 1: Figure S1.
As shown in Fig. 5, we observe a correlation between the reconstructed distances R and

the contact frequencies F, which can be summarized by a power law with exponent α∗

(minus the slope of the red lines in Fig. 5a and b), depending on the value of α and MDS
implementation. Note that we do not claim that these power-laws have a deep meaning,
reflecting e.g. some self-similar or fractal structure of the chromosomes; the range of the
fit is not large enough to make such a claim. These power-laws are used as the simplest
way to quantitatively describe the correlation between F and distances matrices L, D and
R. The comparison of the exponent α∗ with αSh (Fig. 4c) and α (Fig. 5d) provides a global
quantification of the effect on the distances of theMDS step and the integrated algorithm,
respectively. A local quantification will be implemented in the next section.
The value of α initially taken in the expression of edge lengths L is not recovered in the

relationship between the reconstructed distance and the contact frequencies, with expo-
nent α∗. Part of the difference between the two exponents comes from the shortest-path
computation, Fig. 4d, and part from the MDS dimensional reduction, Fig. 5c. This lat-
ter figure shows that metric MDS has a smaller impact on the exponent α∗ than classical
MDS. Using Fig. 4d, it is possible to choose a value of α to get the desired correlation
behavior in the reconstructed structure, with some limitations. Noticeably, the effect of
MDS on α∗ is weaker at larger α.
The value αFISH = 0.227 is at the lower boundary of the accessible range for α∗. How-

ever, this exponent has been obtained from experimental data corresponding to large
distances. This experimental range is difficult to delineate precisely, so that a partial fit
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Fig. 5 Joint influence of the exponent α and MDS implementation. a, b Log-log scatter plot of the
reconstructed distances R with respect to the contact frequencies F for two values α = 0.2 a and α = 1 b of
the edge-length exponent α, and two MDS implementations: nonclassical metric MDS (mMDS, top) and
classical MDS (cMDS, bottom). Minus the slope of the red line gives the exponent α∗ of the best power-law fit
Rij ∼ F−α∗

ij . As a guide for the eyes, the dashed black lines, with the same starting point as the red lines,
represent the line with slope −0.227 = −αFISH . c Exponent α∗ as a function of αSh (see Fig. 4) for cMDS
(green line) and mMDS (red line); the dashed blue diagonal corresponds to α∗ = αSh . d Exponent α∗ as a
function of α for cMDS (green line) and mMDS (red line); the dashed blue diagonal corresponds to α∗ = α.
Same data as in Fig. 4a

would not be reliable; it is nevertheless apparent on Figs. 5a–d (dashed black line) that
a smaller exponent α∗ would be obtained in the large-distance range, supporting the
experimental consistency of the reconstructed structure.

Flexibility of the extended ShRec3D algorithm

We computed the component-wise relative error |Dij − Rij| /Dij to analyze quantitatively
the action of the MDS step according to the scale. The comparisons displayed in Fig. 6a
and b show that metric MDS better controls the error on small distances than classical
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Fig. 6 Comparison of classical and nonclassical metric MDS methods. a, b Action of the MDS step at various
scales of the 3D structure, analyzed quantitatively by computing for each pair of sites (i, j) the relative
difference |Dij − Rij| /Dij between the shortest-path distances Dij and the reconstructed distances Rij . This
relative difference is represented component-wise as a scatter plot with respect to the distances Dij for two
values α = 0.2 and α = 1 of the edge-length exponent α, for both nonclassical metric MDS (mMDS, top) and
classical MDS (cMDS, bottom). The color scale is related to the density of points in the scatter plot (increasing
density from blue to red). c, d 3D structures obtained for α = 0.2 and α = 1 with classical MDS (blue) and
nonclassical MDS (red). A comparison between panels (c and d) would require a suitable 3D alignment, see
Fig. 7 below. Same data as in Fig. 4a

MDS, which performs better at large distances, as expected mathematically. The trade-
off offered by implementing either classical or metric MDS is more marked for α = 1, see
also Additional file 1: Figure S2.
It also apparent on the respective 3D reconstructions, Fig. 6c and Fig. 6d, that metric

MDS reproduces small-scale features (e.g. small loops), while the global shape is more
clearly represented with classical MDS.
For small values of α (Fig. 6c), the reconstructed structure is more compact, closer to

the results of imaging experiments. For larger values of α (Fig. 6d), the reconstructed 3D
structure is more extended, which is specially suitable for 3D genome browsers. Tuning
the exponent α thus allows one to focus either on short or large scales.
Note that a distortion arises in Fig. 6c and d due to the 2D projection of the 3D struc-

tures on the printed sheet. The alignement of the structures obtained with different MDS
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implementations have been done without any rescaling, since they are based on the same
distance matrix D.
Such a rescaling is necessary to compare the structures obtained for different values

of α, as presented in Fig. 7. Small-scale features are reproduced with α = 0.2, while
the skeleton of the overall shape is better perceived with α = 1. Intermediary values of
α offer a continuous trade-off between these two extreme behaviors, as can be seen in
Additional file 1: Figure S3. The reconstruction of the whole chromosome 1 is presented
in Additional file 1: Figure S4, as an illustration of the performance of our algorithm at
large sizes.

Conclusion
Experimental advances permitted by the Hi-C protocol pointed to the need of bridg-
ing a physical viewpoint, enlightening the functional role of 3D genome structure,
with a systemic viewpoint, based on genome-wide data and network analysis. A pillar
of this bridge is the development of reconstruction algorithms, in which information
limited to contacts is sufficient to get a 3D representation of the data. An auxil-
iary though important step is to transform the contact maps into complete distance
matrices.
Our analysis shows that shortest-path distances, inspired by network concepts, is to

date the best way to implement this step with human data, making it possible to deal
with sparse chromosomal contact maps and match FISH data. The extension of ShRec3D
presented here, with a tunable parameter α in the definition of the graph distances and
two implementations of MDS, provides a flexible algorithm to accommodate various
organisms, conditions and goals.

Fig. 7 3D reconstruction with two different values of the exponent α. The figure displays 3D structures
obtained with metric MDS and either α = 0.2 (blue) or α = 1 (red). Data as in Fig. 4a
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Methods
Experimental data: We used human Hi-C data obtained from lymphoblastoids (cell
type GM12878) at a resolution of 1kb [3]. In the analyses presented here, we take as a
benchmark a fragment of chromosome 1 of size 10 megabases (Mb).
These data have been coarse-grained into bins of 10 kb then unbiased and normalized

according to the procedure explained in [10], yielding the contact map F presented in
Fig. 4a. It satisfies

∑
j Fij = 1 for all sites i.

Contact network: In the binary representation considered for illustration purposes,
Fig. 1, the diagonals (i, i± 1) are included in the contact map in order to enforce the con-
nectivity of the genome; accordingly the contact network is connected. It is thus possible
to compute the shortest path between any pair of nodes. In the extension of our algorithm
ShRec3D presented here, we use as an input continuous-valued contact maps F (contact
frequencies), and the edge (i, j) is endowed with a length equal to F−α

ij .

ClassicalMDS (cMDS): Themetric matrixM is derived from theN×N distance matrix
D according to:

Mij = 1
2

[
D2
0i + D2

0j − D2
ij

]
where D2

0i = 1
N

N∑
j=1

D2
ij −

1
N2

N∑
j=1

N∑
k>j

D2
jk (1)

The metric matrix can be obtained in a more compact way asM = −(1/2)JD(2)J (double
centering method) with D(2)

ij = D2
ij and J = IdN − N−11N (where IdN is the the N × N

identity matrix and 1N the N × N matrix with all components equal to 1) [27]. Classi-
cal MDS relates the coordinates V of the reconstructed 3D structure (in the barycentric
coordinate system) to the eigenvectors (Eκ)κ=1,2,3 (with norm equal to 1) associated with
the largest three eigenvalues (λκ)κ=1,2,3 ofM according to:

Vκ ,i = √
λκ × Eκ(i), (κ = 1, 2, 3) (2)

This structure is the best 3D approximation in the sense that it minimizes the quadratic
error

∑
i,j(Dij − Rij)2 between D and the distances R in the reconstructed structure. We

here keep 3 eigenvectors in a supervised way, since we are looking for a 3D structure.
The relevance of this choice can nevertheless be checked on the spectrum of M, which
presents exactly 3 isolated eigenvalues, see Fig. 4c. The same method could apply in any
dimension, keepingm eigenvectors for am-dimensional structure.

Nonclassical metric MDS (mMDS): this method is based on the minimization of the
relative stress

ε =
∑

i,j(Dij − Rij)2∑
ij D2

ij
(3)

In contrast with classical MDS, there is no longer an analytical solution relating D with
the optimal coordinates. The minimization of the stress is achieved by iterative optimiza-
tion (MATLAB function mdscale with criterion metricstress). Noticeably, the procedure
takes as a starting point the 3D structure provided by classical MDS, in order to reduce
the nonconvex optimization problem to a local minimization problem and exploit the
efficient dimensional reduction ensured by cMDS. In this way the computational per-
formance remains satisfactory, especially at large sizes for which the duration of the
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MDS step is anyhow overwhelmed by the computation of the shortest-path distances (see
Additional file 1: Figure S1) . Other MDS options are possible [25, 26]. Beyond classical
and metric MDS, we also investigated the specifications of ShRec3D when implemented
with Sammon MDS [28] and nonmetric MDS [29, 30]. Basically these two latter options
give results quite similar to metric MDS. Accordingly, we discuss in the main text the
results obtained with classical and metric MDS, and present some additional tests com-
paring the four methods (classical MDS, metric MDS, Sammon MDS and nonmetric
MDS) in the Supplementary Materials.

Numerical implementation: The original algorithm ShRec3D [9] has been extended to
include the edge-length exponent α as a tunable parameter, and it now implements both
classical and nonclassical metric MDS. The MATLAB code is available at: https://sites.
google.com/site/julienmozziconacci/#TOC-Publicly-available-softwares

Additional file

Additional file 1: Supplementary material. (483 KB PDF)
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