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Abstract

Background: In this report, we show how entropy computation can be applied to
the characterization of a protein-protein interaction networks to assist the selection
of personalized chemotherapeutic strategy for cancer treatment.

Methods: With seven malignant (BT-20, BT-474, MDA-MB-231, MDA-MB-468, MCF-7, T-
47D, ZR-75-1) and one healthy (MCF10A) cell lines, we combined interactome and
transcriptome data as well as Shanon entropy computation to classify drugs according
to their inhibitory potential and to identify the top-5 protein targets best suited for
personalized chemotherapy.

Results: We have investigated breast cancer cell lines and found that the entropy of
their protein interaction networks is negatively correlated with their sensitivity to target-
specific drugs of high potency. This sensitivity is defined as half cell growth inhibition
(GI50) with respect to drug administration. By contrast, we found no correlation for
drugs that are either of low potency or with no specific molecular targets (cytotoxic).
As a result, drugs can be divided into target specific and generally cytotoxic according
to the GI50 they produce in malignant cell lines. By extrapolation, we predict that the
inactivation of the top-5 up-regulated protein hubs by specific drugs will reduce the
protein network entropy by ~2 %, on average, which is expected to substantially
increase the benefit of a personalized chemo-therapeutic strategy for patient survival.

Conclusions: We propose several novel drug combinations using only the approved
drugs for the inactivation of the target identified in this study with the purpose
of increasing patient survival and lowering the deleterious side effects of cancer
chemotherapy.

Keywords: Breast cancer; Entropy; Interaction network; Histological subtype;
Chemotherapy
Background
Preamble

The text of this report may appear somewhat specialized to some readers not familiar

with drug development or systems biology. In order to improve readability of this

paper, we introduce the definitions of the key concepts used in what follows.
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Interactome

In molecular biology, an interactome is the whole set of molecular interactions in a

particular cell. It refers specifically to physical interactions among proteins, also known

as protein-protein interactions, i.e., physical contacts established between two or more

proteins as a result of biochemical events and/or biophysical forces. Here, we more par-

ticularly refer to transient interactions among proteins in the context of signaling net-

works, i.e., the protein pathways that connect protein receptors on the cell surface with

transcription factors that (up- or down-) regulate gene expression. Mathematically,

interactomes are generally displayed as graphs (networks).

Networks

Complex networks are ubiquitous in nature. Mathematically, a network may be described

by either a directed or undirected graph G= (V, E) with vertex and edge sets V and E, re-

spectively. An edge appears in the graph if there is a known interaction of the two partners,

for example two interacting proteins in a cell, either by direct binding or by enzymatic ca-

talysis. A node is referred to as a node of degree k if it is connected to other nodes by k

edges. The connectivity level (or rate) of a network characterizes the average number of in-

teractions (edges) per node. When, a node has a number of interactions (connections or

edges) significantly larger than the average, it is called a hub. Top-5 (or 10, or more) refers

to the 5 (or 10) best items in a list for a given feature under consideration.

Entropy

In thermodynamics, entropy (usually denoted by symbol S and referred to as the

Boltzmann entropy) is a measure of the number of specific ways in which a thermo-

dynamic system may be internally rearranged between its microstates, which is com-

monly understood as a measure of disorder. In statistical mechanics Boltzmann’s

equation relates the entropy S of an ideal gas to the quantity W, which is the number

of microstates corresponding to a given macrostate, i.e.

S ¼ kBln W ð1Þ

where kB is the Boltzmann constant equal to 1.38065 × 10−23 J/K. For thermodynamic

systems where microstates of the system may not have equal probabilities, the appro-

priate generalization, called the Gibbs entropy, is:

S¼‐kBΣpiln pi ð2Þ

Here, the subscript i runs over all microstates and Eq. (2) reduces to Eq. (1) if the
probabilities pi are all equal.

In information theory, entropy (the so-called Shannon entropy) is the negative of the

expected value of the information contained in a message received. Mathematically

speaking the Shannon entropy, H, of a discrete random variable X is a measure of the

amount of uncertainty associated with the value of X when only its distribution is

known. So, for example, if the distribution associated with a random variable is con-

stant (i.e. equal to some known value with probability 1), then entropy is minimal and

equal to 0.

Degree-entropy is computed for a given network as
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H ¼ −
XN−1

k−1

p kð Þ lnp kð Þ ð3Þ

where p(k) represents a probability distribution on the nodes of the network, p(k) =Nk/N with

Nk the number of nodes with degree k and N is the total number of nodes in the network.

Betweenness-centrality is a measure of the centrality of a node. Given a network

graph G(E,V) consisting of nodes V and edges E, the betweenness-centrality cB is a

measure of the centrality of a node, v. Typically it is the sum of the fractions of shortest

paths that pass through v and is given by:

cB ¼
X

s;t∈V

σðs; t vj Þ
σ s; tð Þ ð4Þ

where σ(s,t) is the number of shortest paths between two nodes (s,t) and σ(s,t\v) is the

number of those paths passing through nodes other than v.

Here, the biological system studied represents the interactome structure for a cell, i.e.,

the number of edges (interactions with neighbor proteins) per node (proteins in the net-

work). The probability distribution of the events (the probability of a given number of

edges per node), coupled with the information amount (the probability of a given number

of edges for the node considered multiplied by its base 2 logarithm) of every event (node),

forms a random variable whose average (also termed expectation value) is the average

amount of information. Its inverse is the network entropy generated by this distribution.

Half cell growth inhibition (GI50)

In the context of whole-cell assays, GI50 is the concentration of a drug that is needed

to inhibit 50 % of cell proliferation.

Introduction
Breast cancer is a global disease. It is the most common cancer in women (25 % of

all cancers), with nearly 281,840 estimated new cases, and 40,290 estimated deaths

in 2015 in US population (http://seer.cancer.gov). Breast cancer is also becoming an

increasingly urgent problem in low- and middle-income countries.

In recent years, government, academia, industry and foundations have devoted vast

resources to research and development in order to identify cancer-related molecular

targets (oncotargets) that might help improve both diagnoses and clinical practices. A

consensus regarding the definitive prognostic/predictive analysis has yet to be reached,

but significant progress continues to be made in the ongoing search for optimized

treatment protocols with improved specificity and reproducibility. Basically, breast can-

cers are classified according to the type of hormone receptor over-expressed either on

the surface, in the cytoplasm or in the nucleus of their malignant cells [1]. The three

most important receptors for breast tumor classification are:

(i) Endocrine receptors, i.e., estrogen (ER) or progesterone (PR) receptors. Breast

tumors that grow in response to estrogen are classified as ER+ while those that

grow in response to progesterone are classified as PR+. ER+ or/and PR+ tumors

(60 % of the cases) are likely to respond to endocrine therapies while ER- and PR-

tumors (5 to 10 % of the cases) are not.

http://seer.cancer.gov/
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(ii) Human epidermal growth factor receptor 2 (HER2). Malignant cells up-regulate a pro-

tein known as HER2/neu in about 20 to 25 % of breast tumors and results in a HER2+

phenotype. These breast tumors tend to be much more aggressive and fast-growing.

(iii) Triple negative (TN). About 15–25 % of breast tumors do not over-express any

of estrogen, progesterone, or HER2 receptors. TNs are more difficult to treat, since

most chemotherapeutic agents target one of the ER, PR or HER receptors and often

require combination therapies [2]. The name TN is sometimes used as a surrogate

term for basal-like and comprises a very heterogeneous group of cancers. There is

no standard classification scheme for TNs, but these malignant cells are frequently

defined by cytokeratin 5/6 and EGFR staining. However, no clear criteria or cutoff

values have been standardized yet.

The chemotherapy regimens used in breast cancer have a relatively low level of mo-

lecular specificity with a wide range of acute and long-term side effects that can be sub-

stantially deleterious to patients. In addition, clinicians cannot accurately predict the

risk of metastasis development in individual patients. Currently, among about 80 % of

patients that received adjuvant chemotherapy, approximately 40 % relapse and ultim-

ately die of metastatic tumors. A further complicating factor in these analyses is that

many women who would be cured by local treatment alone, which includes surgery

and radiotherapy, will be ‘over-treated’ and suffer the toxic side effects of chemotherapy

needlessly. Based on this context, new strategies, models or paradigms are urgently

needed to identify patients, who are at the highest risk for developing metastases, and

which might benefit from specific drugs. This approach is at the core of personalized

medicine (also referred to as precision medicine) today.

A tremendous effort is ongoing worldwide to improve treatment success and de-

crease deleterious side effects in patients. With that concern, cell-lines are very useful

models for the identification of clinically relevant molecular determinants of tumor re-

sponse to drugs. It has been reported that cell lines are, indeed, worthwhile models of

primary tumors at both the transcript and genome copy-number levels [3]. The com-

parative analysis of pathways has shown that the majority of subtype-specific signaling

sub-networks are conserved between cell lines and tumors. This similarity is important,

given the very different environments between a cell line growing in axenic culture and

a primary or metastatic tumor exposed to in vivo conditions. This supports the

consistency of in vitro investigations as relevant inferences for clinical testing [4].

As a fruit of ~30 years of investigations, the interactions between cellular proteins

reached a sufficiently high level of description for modeling complex molecular pro-

cesses such as those involved in cancer. Here, we applied this vast systems biology

knowledge base to better understand the behavior of malignant cell lines subjected to

drug treatments. We used network entropy as a quantitative measure according to the

definition of Shannon [5] to characterize the complexity of protein interaction net-

works as described by Breitkreutz et al. [6]. We used Eq. (3) to evaluate the network

entropy of each of the protein-protein interaction networks considered. This means, we

first generated a rank-order distribution function for each network and associated the

frequency of a particular number of edges connected to nodes with a probability func-

tion, p(k). This was repeated for each particular network with its rearrangement as a

result of removing the edges corresponding to the inhibition of a specific protein-
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protein interaction due to a targeted pharmacological agent. We have chosen the top 5

protein hubs as predicted best targets for inhibition by drug molecules Our objective has

been to quantify the benefit associated to the target inactivation of top-5 protein hubs in

up-regulated genes rather than non-hub proteins [7]. We found that the proportion of

total entropy represented by top-5 hub proteins is ~2 % of total protein network, on aver-

age, which by extrapolation, in the case of breast cancer is expected to bring the 5-year

survival in the majority of the cases to 100 % [6, 8], i.e., to improve the 10-year survival

expectancy or perhaps even to result in a permanent cure. Consequently, we proposed a

few optimized drug combinations based on our inferences using the approved inhibitors

available on the market. Each combination is specific to a particular subtype of breast can-

cer due to their differences in the topology of the corresponding interaction networks.
Methods
Interactome data

The protein connectivity that serves as data for entropy calculation in the present

work is based on the protein interactions given in the file intact-micluster.zip avail-

able from ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab/ (accessed on

04.04.2014). We selected the two columns of UniprotKB identifiers (UID) in the

intact-micluster.zip file and eliminated the incomplete pairs (marked as “-”, i.e.,

when an intact access number has no UniprotKB equivalent known). The resulting

file contained 308,314 protein pairs. This interaction file was then processed to form

a non-redundant UID list used to retrieve the corresponding protein sequences

(68,504) by querying UniprotKB at http://www.uniprot.org/help/uniprotkb. Since

some UID were obsolete, we substituted them with their current name retrieved by

querying the field search at UniprotKB using the format ‘replaces:obsolete UID’. The

equivalence between UID and human genes was obtained by homology search

(tBLASTn) of protein sequences (68,504) used as queries and human coding

sequences (CDS) used as subjects from the dataset (hs37p1.EID.tar.gz) of Fedorov’s

laboratory [9] available at http://bpg.utoledo.edu/~afedorov/lab/eid.html. Homolo-

gous hits were considered significant when their score was ≥120, E-value ≤10−4 and

identity rate ≥80 % over ≥50 % of query size (http://mitointeractome.kobic.kr/sup-

plement.php). After elimination of subject redundancy (keeping the hit matching

the largest identity rate), the final size of human CDS dataset fully described by pro-

tein interactions was 17,301.
Transcriptome data

We recovered transcriptome datasets of cell lines (BT-20, BT-474, MDA-MB-231, MDA-

MB-468, MCF-7, MCF10A, T-47D, ZR-75-1, see information at http://www.atcc.org/)

from http://www.illumina.com/science/data_library.ilmn. The gene expression profile was

evaluated through a homology search with the human CDS sample of Fedorov’s labora-

tory. The fifty bp sequences from transcriptome tags were used as queries in homology

searches (BLASTn) in human CDSs. The homology redundancy in the BLASTn output

file gave us the tag count per gene, i.e., a profile of human gene expression for the consid-

ered sample. Homologous hits were considered significant when covering ≥25 bp (50 %

of size).

ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab/
http://www.uniprot.org/help/uniprotkb
http://bpg.utoledo.edu/~afedorov/lab/eid.html
http://mitointeractome.kobic.kr/supplement.php
http://mitointeractome.kobic.kr/supplement.php
http://www.atcc.org/
http://www.illumina.com/science/data_library.ilmn
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Each gene expression profile (tag count per gene) was normalized according to CDS

size and whole tag count using the formula (109*C)/(N*L), where 109 is a correction

factor, C is the number of reads that match a gene, N is the total mappable tags in the

experiment, and L is the CDS size [10]. When tags were counted for more than one

gene isoform (alternative splicing forms), we cumulated counts and allocated them to

just one form (the largest one); this strategy means that we looked for gene expression

and not isoform expression.

To allow the comparison between independent gene expression profiles, we further

applied Quantil-normalization (Q-norm) considering the eight samples of this study

[11]. Then, we measured the entropy by summing the product of edge probability per

node and its base two logarithm over nodes whose expression level was different from

zero according to formula 1 where Pv is the probability of having v edges per node, n is

the number of nodes and i ∈{i, …,n}.

H Gð Þ ¼ −
Xn

i¼1

Pv log Pvð Þ; ð5Þ

Net entropy differences occur between cell lines because of a combination of the in-
teractome (network of protein interactions) that define in a fixed way the number of

interactions between a protein and its neighbors in the network and the transcriptome

that shows whether a gene (corresponding to a node in the protein network) is

expressed or not. The interactome does not change from one cell line to another in our

computational experiments because it is the product of ~30 years of wet lab experi-

mentation. By contrast, the transcriptome (gene expression) is relatively easy to meas-

ure by high throughput sequencing techniques, which allow the identification whether

a gene for a protein of the network is expressed or not according to the cell line under

consideration. If the gene is not expressed, the corresponding node in the network does

not exist in the cell line in the expression state considered and its entropy is not in-

cluded. In the other cases where the expression is larger than zero, the entropy is com-

puted with the consequence that the network is Boolean in essence, which is an

approximation in the sense that each node could be modulated by its level of expres-

sion to compute the entropy. However, the Shannon entropy does not account for rela-

tive statistical weights and hence this level of information has been neglected.

Classification of genes according to expression rates

Since genes with a low expression rate are the most numerous, the distribution of gene

frequency according to normalized tag counts is Poisson like. To classify genes into

down- or up-regulated, a symmetrical distribution is necessary in order to estimate a

p-value on a Gaussian curve resulting from the best fit with the observed distribution.

To obtain a symmetrical distribution, we subtracted the normalized (according to size

and number) data from the transcriptome of a malignant cell line from the non-

tumoral cell line (MCF10A). After normalization using Q-norm, the distribution’s mean

was close to zero for any comparison between a malignant cell line and the control.

The log10(xi + 1) transformation brought the observed distribution closer to a Gaussian

distribution. We used PRISM to perform the best fit (95 %) with a Gaussian distribu-

tion of log10(xi + 1) data classified by increasing values from the largest negative
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number to the largest positive number. In this investigation, we only considered up-

regulated genes since it is those genes that encode proteins targeted under the classical con-

cept of protein inhibition by drug binding. The boundaries corresponding to p-values of

1 % considering a one-tails p-value (up-regulated side) on the best fit of a Gaussian distribu-

tion were used to calculate the classification threshold of down- and up-regulated genes on

the observed distribution using the inverse function, i.e., 10log10(xi+1) and subtracting 1 from

the result of the exponential. The up-regulated genes at p-values <0.001 were those with

positive values higher than the classification thresholds of +150.

To calculate the entropy correlation between potentially up-regulated genes (≥150
reads per gene) and the total gene sample, we identified the list of genes for which up-

regulation occurred at least once over all seven malignant cell lines and summed the

entropy per cell line over these gene subsets for the eight cell lines (including the refer-

ence MCF10A). We did the same calculation for the set of genes corresponding to the

total set minus the potentially up-regulated genes referred to as the complement and

verified that the total entropy was indeed the sum of those of potentially up-regulated

genes and the complement over the eight cell lines. Finally, we calculated correlations

of entropies by pairs considering the potentially up-regulated, complement and whole

sets of genes.
Drug data

The GI50 were derived from the sd02 datasheet (http://www.pnas.org/lookup/suppl/

doi:10.1073/pnas.1018854108/-/DCSupplemental/sd02.xlsx) from Heiser et al. [4] and

the target annotation associated to these drugs from the sd04 datasheet of the same

source. The 74 drugs selected for screening cover a wide range of targets and processes

implicated in cancer biology and progression and can be classified into two major

groups: (i) agents that target specific receptors (n =54) and (ii) general cytotoxic che-

motherapeutics (n = 20), defined as various. Thus, we analyzed the correlation between

the –log10(GI50), associated to both target-specific and broadly cytotoxic drugs, and

the corresponding entropy per node of the protein network in the control MCF10A cell

line as well as in luminal A (MCF-7, T-47D, ZR-75-1), luminal B (BT-474) and triple-

negative (BT-20, MDA-MB-231, MDA-MB-468) malignant cell lines.
Benefit of targeting up-regulated protein hubs as therapeutic targets

Since the selection of up-regulated protein targets is expected to reduce as much as

possible the incidence of adverse side effects for the patient, we calculated the benefit,

in terms of entropy per node, that could be associated to the inactivation of top-5 most

connected proteins (hubs). To do this, we simply computed the entropy per node asso-

ciated to top-5 most connected proteins in the context of the up-regulated sub-

network and computed the relative difference of entropy per node of this sub-network

with and without these top-5 hub proteins. According to Cheang et al. [12], the average

probability of 5-year survival of patients with luminal breast cancer is ~90 % while that

of the patients with triple-negatives is ~70 % and the control is of course 100 %. Thus,

we measured the benefit of protein inactivation by the reduction of entropy of its pro-

tein network with the consequence that it comes closer to that of the non-tumoral cell,

which can be predicted in terms of benefit (%) to the patient by interpolation using the

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018854108/-/DCSupplemental/sd02.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1018854108/-/DCSupplemental/sd02.xlsx
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orthogonal regression line through the average protein network entropy of luminal,

triple-negative and control cell lines as well as their associated 5-year patient survival.

Finally, we searched the database of clinically approved drugs that potentially inhibit

top-5 hub targets and proposed their optimized combination for new cocktails in the

treatment of breast cancer.

Results
The size of the human interactome used in our computational experiment was 9724 pro-

teins common to all eight particular breast cancer cell lines, which represents about one

third of the whole human set of expressed genes [13] and half of the human proteome

[14]. However, much of the interactome proteins were not expressed in our cell line sam-

ple and the number of expressed genes per cell line was 7207, on average (Table 1).

As expected, from the very similar number of expressed genes in the eight cell lines, the

entropies per node were also very similar, only differing in the third to fourth decimal

place. Consequently, the total entropies cumulated over all nodes differed in the second

decimal place and were included in a range of 0.06 units between 2.356 and 2.416 for the

sample of up-regulated genes (Fig. 1) and in a range of 0.03 units between 11.415 and

11.441 for the total gene sample (Figs. 1, 2 and 3). This is simply due to the fact that the

large majority (6913 genes, on average; σ = 217.6) of genes encode proteins with low con-

nectivity levels (11 edges, on average; σ =0.2), while the sample size of up-regulated genes

was much smaller (311 genes, on average; σ =14.7) and the connectivity level (22 edges,

on average; σ =1.6) of their proteins was higher. The features of down-regulated genes

were very similar concerning sample size and connectivity to those of up-regulated genes

(Fig. 2).

Since it may seem unwarranted to draw conclusions from (i) data that only differ in the

second decimal place and (ii) the size of the cell sample addressed here is too small to con-

duct statistical testing based on the variance, we analyzed entropy patterns among cell lines

to detect whether some internal consistency may justify the general trends reported here.

We found a positive correlation (r = 0.72, P = 0.04) between the entropies of the subsets of

potentially up-regulated genes (n = 923) taking the eight cell lines into account and the
Table 1 Statistics of sample size and entropy per node of cell line samples

Cell line Histological subtype Na Entropy ER/PRb HER2c EGFRd CK5-6e

MCF10A Control 7200 11.7390910 0 0–1+ 2+ +

MCF-7 LAf 7209 11.7484749 6 0–1+ 1+ -

T-47D LA 7205 11.7567033 Positive 2+

ZR-75-1 LA 7215 11.7660540 3–4 2+ 1+ -

BT-474 LBg 7208 11.7443749 0/8 3+ 1+ -

BT-20 TNh 7205 11.7649257 0 0–1+ 2+ -

MDA-MB-231 TN 7208 11.7577692 0 0–1+ 1+ -

MDA-MB-468 TN 7207 11.7505671 0 0 3+ -
aN: Sample size of expressed genes on a total gene sample of 9724
bER/PR: Estrogen/Progesterone receptor
cHER2: Human epidermal growth factor receptor
dEGFR: Epidermal growth factor
eCK5-6: Cytokeratin 5/6
fLA: Luminal A
gLB: Luminal B
hTN: Triple-negative



Fig. 1 Correlation of entropy level between (a): the up-regulated (the entropy value is computed over 923 genes)
and total gene sets (the entropy value is computed over 9724 genes); (b): the complement (the entropy value is
computed over 8801 genes) and total gene sets; (c): the up-regulated and complement gene sets
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Fig. 2 Sub-network of differentially expressed genes between BT-474 (Luminal B) and MCF10A, represented
in a circular layout. Nodes represent genes while links represent interactions between the proteins of these
genes. The size of nodes indicates the connectivity rate in the total network (not in the sub-network of
down- and up-regulated genes) and color represents an expression pattern (green: down-regulated, red:
up-regulated) between tumoral versus non-tumoral breast cell line at p < 0.01. Gephi was used to produce
the network image
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entropies of the total gene set (n = 9724) (Fig. 1a). By contrast, we did not find any signifi-

cant correlation (r = −0.29, P = 0.51) when comparing entropies of the gene set (n = 8801)

corresponding to the total sample minus the potentially up-regulated ones (referred to as

the complement) with the total sample (n = 9724) (Fig. 1b). However, the comparison of

potentially up-regulated genes (n = 923) to the complement (n = 8801) demonstrated a

correlation of r = −0.93 (P = 0.0002) (Fig. 1c). This pattern is unlikely to occur just by chance

or by some sample bias and demonstrates that the general conclusions drawn in this paper

are consistent.

We found a tendency in malignant cell lines to be more sensitive, on the average, to

target-specific drugs than to broadly cytotoxic ones (Tables 2, 3 and Additional file 1:

Table S1). Cytotoxic drugs with no specific molecular targets performed poorly since

their associated –log10(GI50) was never larger than 5.3, on average, which is consid-

ered as a rule of thumb by the state of the art in drug development as the minimal

GI50 necessary at a 10 μM concentration to select a candidate molecule to become a

potential candidate compound for lead optimization (Fig. 3). By contrast, target

specific drugs showed, on the average, a –log10(GI50) larger than the 5.3 threshold.

When comparing the entropy per node of the total protein network of a cell line to its value

of –log10(GI50) for different drugs (Tables 2, 3 and Additional file 1: Table S1), we found a

noisy pattern in cytotoxic drugs, while a clear negative correlation (r = −0.859, Fig. 3a) could
be found, on average, for target specific drugs. The negative correlation was especially

convincing for luminal (r = −0.923, Fig. 3b) and triple-negative cell lines (r= −0.725, Fig. 3c).
Given that target inactivation by specific drugs appeared as a more productive strat-

egy than therapies based on cytotoxic compounds, we listed the top-5 most connected

proteins encoded by up-regulated genes according to a p-value of 0.001 (Additional



Fig. 3 Relationship between the entropy of the protein interactome of malignant cell lines and their
sensitivity to cytotoxic (●) and target specific agents (∎) drugs. Average drug sensitivity across all cell lines
(a), luminal (b) and triple negative (c). "chemoth" stands for chemotherapy
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file 2: Table S2). The subtraction of the entropy contribution by each top-5 target from

the total protein network entropy (PNE) corresponding to the cell line under consider-

ation yields a net entropy corresponding to that network, i.e., the benefit that can be

expected from the inactivation of these targets. By interpolation with the orthogonal

regression line through average network entropies of triple-negative, luminal and con-

trol cell lines, on the one hand, and patient 5-year survival (70, 90, 100, respectively),

on the other hand, the inactivation of most top-5 targets resulted in decreasing the

total entropy of malignant cell lines to values close to or lower than the entropy of the

control. As a consequence of the significant effect of top-5 target inactivation on net-

work entropy reduction in malignant cells, top-5 targets are recommended for drug de-

velopment in a combination therapy context (Fig. 4 and Additional file 2: Table S2).

Actually, we believe that top-5 target inactivation potentially offers a complete 5-year

survival of the patient population under consideration provided no serious overlapping

toxicities of these drugs exist. The analysis of data from Additional file 2: Table S2 and



Table 2 The panel of cytotoxic drugs classified according to their therapeutic targets, primary
effector pathways, or signaling pathway; and the sensitivity for each malignant cell lines

Drugs group NuclSynta Metabb DNAc Variousd Average

Targets Ie IIf IIIg IVh

Li

MCF-7 4.72 NA 5.07 6.10 5.30

T-47D 3.01 4.46 5.19 5.39 4.51

ZR-75-1 5.16 4.16 5.99 5.65 5.24

BT-474 3.12 3.98 4.76 5.89 4.44

Correl.j 0.500j 0.433 0.961 −0.623 0.401

TNk

BT-20 3.48 4.69 4.93 5.50 4.65

MDA-MB-231 3.44 4.13 5.71 5.40 4.67

MDA-MB-468 4.31 4.03 5.59 6.04 4.99

Correl. −0.845 0.926 −0.785 −0.783 −0.891

Tot. correl.l 0.197 0.633 0.486 −0.683 0.126
aNuclSynt: DNA synthesis
bMetab: antimetabolites
cDNA: alter DNA structure
dVarious: diverse spectrum of biological activities
eI: TYMS, DNA, RNA, DHFR, GART
fII: FDPS
gIII: DNA cross-linker, TOP1, TOP2A, TOP2BA, TOP2AB, pyrimidine anti-metabolite
hIV: PSMD2, PSMB1, PSMB5, PSMB2, PSMD1, IKBKB, SRC, MDM2, FLT3, NTRK1
iLuminal: Luminal A and B
jCorrel: Correlation of drug 50 with entropy per node (see Table 1)
kTN: Triple-negative
lTot. correl: correlation for L and TN together
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Fig. 4 shows that some approved drugs are already clinically available for inactivation of

the hub targets considered here (Table 4). However, it should be noted that the avail-

ability of existing target-specific compounds in drug libraries is limited. Clearly, the

combination of chemotherapy drugs increases the expected benefit compared to single-

drug treatments. Table 4 shows that the expected efficacy of a drug combination varies

with the target cell line according to the methodology used in this study.

A drug such as fusicoccin is expected to be effective against most breast cell lines

because its protein target is almost always among the top differentially expressed hub

proteins (except in MCF-7). By contrast, to increase the patient’s 10-year survival, one

should complement fusicoccin with some other drugs according to the cell line under

consideration. Of course, due to tumor heterogeneity, several cellular phenotypes can

be identified at the same time complicating the issue of optimal drug selection

immensely. However, the same reasoning should be applied to all of the phenotypes

represented, perhaps with a statistical weight applied, but an in-depth discussion on

this issue is beyond the scope of the present study so we only address isolated cell lines

in what follows. To complement fusicoccin, one may consider the following panel of

drugs from the theoretically most efficacious to the less efficacious according to the

entropy of their respective target in cell signaling networks: gefitinib, erlotinib,

cetuximab, lapatinib, panitumumab, vandetanib, trastuzumab, pertuzumab, afatinib,

neratinib, AZD9291 or CLO-1686 > difopein or R18 (triple-negative); CGP78850 or

C90 > HDGF-H3 or NSC348884 (Luminal A); and difopein or R18 > trastuzumab,

pertuzumab or NeuVax vaccine (Luminal B).



Table 3 The panel of targeted drugs classified according to their therapeutic targets, primary
effector pathways, or signaling pathway; and the sensitivity for each malignant cell lines

Drugs
group

HSP90* PI3K-
AKT¥

mTOR† Angiog.
‡

EGFR
Retal₤

MT/
Cyts**

RasRaf*** Cell
cycle ∘

HDAC∘∘ Average

Targets I∘∘∘ II†† III‡‡ IV₤₤ Va VIb VIIc VIIId IXe

Lf

MCF-7 6.43 5.92 6.32 4.47 4.65 7.27 4.99 5.57 5.54 5.69

T-47D NA 6.21 6.08 4.56 4.62 6.33 4.63 5.49 5.57 5.44

ZR-75-1 6.74 5.66 4.18 4.41 4.57 6.91 4.95 5.13 5.22 5.31

BT-474 7.77 6.42 7.84 4.58 5.73 6.93 4.55 5.14 5.82 6.09

Correl.g −0.462 −0.746 −0.953 −0.699 −0.704 −0.327 0.420 −0.222 −0.918 −0.923

TNh

BT-20 NA 5.38 6.99 4.47 4.99 7.00 4.81 5.40 5.09 5.52

MDA-MB-
231

6.82 5.06 5.45 4.42 4.65 7.70 5.22 5.18 4.68 5.47

MDA-MB-
468

6.59 5.70 5.40 4.38 4.90 7.78 4.78 6.31 5.19 5.67

Correl. 1.000 −0.504 0.877 0.998 0.245 −0.905 0.064 −0.764 −0.189 −0.725

Tot. correl.i −0.391 −0.605 −0.528 −0.411 −0.546 −0.205 0.351 −0.298 −0.588 −0.859

*HSP90: Heat shock protein 90; ¥PI3K-AKT: Phosphatidylinositol 3′ -kinase(PI3K)-Akt signaling pathway; †mTOR:
Mammalian target of rapamycin; ‡Angiog.: Angiogenesis ; ₤EGFR Retal: EGFR/FGFR/HER2/IGFR pathway; **MT/Cyt:
microtubule/cytoskeleton; ***RasRaf: Ras-Raf-MEK-MAPK-ERK pathway; ∘Cell cycle: cell cycle involved proteins ; ∘∘HDAC:
histone deacetylases; ∘∘∘I: HSP90AA1; ††II: AKT, AKT1, AKT2, PIK3CA, PIK3CB, PIK3CD, PIK3CG, ZNF217; ‡‡III: mTOR; ₤₤IV:
MMP2, MMP9, VEGFR2
aV: EGFR, ERBB2, ESR1, FGFR3, IGF1R
bVI: BCL2, CENPE, Kinesin, ROCK2, TUBB, TUBB1, TUBB3
cVII: BRAF, ELK3, MAP2K1, MAP2K2, MAPK9, MAPK10
dVIII: AURKA, AURKB, AURKC, CCNB1, CDC25A, CDC25B, CDC25C, CDK1, CDK4, CHEK1, NAE1, PLK1, polyamine analogue
eIX:HDAC
fL: Luminal
gCorrelation of drug GI50 with entropy per node (see Table 1)
hTN: Triple-negative
iTot. correl: correlation for L and TN together
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Discussion
The protein network representation used in this study can be considered very large

since from a total of 9724 genes, an average of 7207 were included at the same time for

all eight cell lines. In spite of the fact that all conclusions drawn in this paper rely on

entropy differences in the second decimal place, we believe that they are significant be-

cause an internal pattern was found in the computational experiment in the form of
Fig. 4 Expected benefit of top-5 most connected protein of up-regulated genes for 5-year of patient
survival. (□): observed data (r = −0.869); (●): expected patient benefit derived from y = −0.0005*x + 11.4732,
where y is the entropy of top-5 protein hubs and x is the 5-year survival benefit expected from target
inactivation (see Additional file 2: Table S2) by the corresponding specific drug



Table 4 Expected benefit of drug combination in breast cancer therapy using entropy data from
Additional file 2: Table S2 and the relationship y = −0.0005*x + 11.4732

Targets Drug combination Benefit, %

BT-20 157

P00533 EGFR Gefitinib, erlotinib, cetuximab, lapatinib, panitumumab, vandetanib,
trastuzumab, pertuzumab, afatinib, neratinib, AZD9291, CLO-1686a [15]

120

P62258 YWHAE Fusicoccinc [16] 91

MDA-MB-231 157

P31946 YWHAB Difopeinb [17], R18c [18] 127

P62258 YWHAE Fusicoccinc [16] 104

MDA-MB-468 229

P00533 EGFR Gefitinib, erlotinib, cetuximab, lapatinib, panitumumab, vandetanib,
trastuzumab, pertuzumab, afatinib, neratinib, AZD9291, CLO-1686a [15]

146

P31946 YWHAB Difopeinb [17], R18c [18] 140

P62258 YWHAE Fusicoccinc [16] 116

MCF-7 216

P62993 GRB2 CGP78850c [19], C90b [20] 195

P06748 NPM1 NSC348884c [21] 111

T-47D 105

P62258 YWHAE Fusicoccinc [16]

ZR-75-1 236

P62993 GRB2 CGP78850c [19], C90b [20] 162

P62258 YWHAE Fusicoccinc [16] 89

P51858 HDGF HDGF-H3b [22] 81

P06748 NPM1 NSC348884c [21] 79

BT-474 214

P31946 YWHAB Difopeinb [17], R18c [18] 151

P04626 ERBB2 Trastuzumab, pertuzumab, NeuVax vaccinea [23] 130

P62258 YWHAE Fusicoccinc [16] 127
aClinical trials
bPre-clinical animal models
cIn vitro assays
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negative and positive correlations that cannot be explained by chance. Of course, the

pattern is not only due to up-regulated genes since, for entropy comparison, the same

sample size must be taken for all seven malignant cell lines and the number of signifi-

cantly up-regulated genes is not the same in each of these lines. Thus, according to the

cell line a sizeable number of non up-regulated genes may contaminate that sample.

However, it is in the potentially up-regulated genes that one must look for an increase

of entropy correlating with cell malignancy, which is also consistent with the increased

metabolism of malignant cells.

The exercise of correlating potentially up-regulated genes to the gene complement

demonstrates the internal consistency of our sample according to the entropy calcula-

tion made here. The pattern of entropy distribution found recapitulates the notion that

the more malignant a cell line is, the larger is the associated entropy of its network.

Interestingly the protein network being finite by nature, if the entropy of up-regulated

genes increases, a compensation effect occurs at a cost represented by the entropy of

the total network. However, still a higher level of significance exists when considering
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entropy differences over the whole sample because this also takes into account genes

that are not necessarily significantly up-regulated, but still over-expressed compared to

the reference. The sum total of entropies over these genes makes a difference at the

whole sample level. Therefore, a sample of potentially up-regulated genes cannot be

taken into account to calculate the benefit of drug treatment to the patient; the right

choice involves the full set of genes.

A correlation between malignancy and PNE was first shown by Breitkreutz et al. [6]

by considering different types of tumors, which incidentally did not include breast can-

cer. Here, we studied several breast cancer cell lines and a similar trend has been ob-

served (Table 1). It is conceivable that the small entropy differences observed here are

at least in part due to this specific situation of dealing with a single cancer type, but

also due to the different methodology used by Breitkreutz et al. [6].

The boundary between both types of targets (broadly cytotoxic and target-specific) is

not always clear because some specific targeting drugs may have unintended off-target

effects leading to inhibition of DNA synthesis, for instance, such as is the case with

methotrexate, which is specific for the folate receptor, hence inhibiting purine and pyrimi-

dine base biosynthesis and ultimately blocking DNA synthesis. When grouping drugs by

more narrowly defined activities, the noise in the data tended to be reduced and a positive

correlation appeared for cytotoxic drugs (data not shown), but the negative correlation

associated to specific targets remained. Here, we took a conservative position and pre-

sented the data without additional potentially confounding filtering operations. However,

it is interesting to note that if the positive correlation between –log10(GI50) of cytotoxic

drugs and PNE were to be confirmed in the future, it would mean that cytotoxic drugs

are involved in another type of relationship regarding cell sensitivity compared to target-

specific drugs. Rather, it means that the system relies much more on the mechanism that

is inactivated when the entropy of the system is high than when it is low. As a metaphor

for this concept, the consequences of a central power plant destruction are much greater

for an industrialized country than for a developing one, simply because the entire system

depends on it due to strong interconnectedness.

A negative correlation between –log10(GI50) and PNE has the consequence that cells

with more complex protein networks (higher entropy) have more options to explore as

alternative pathways in order to cope with target inhibition, which is not the case with

cells characterized by less complex protein networks (lower entropy) which, as a conse-

quence, are expected to take more time to adapt (or eventually die). This notion is rem-

iniscent of the gene-for-gene concept described by Harold Henry Flor [15] in plant

pathology. In plants, the gene-for-gene relationship is generally seen as the collapse of

a host’s resistance to a parasite that may occur as a response to a mutation in a para-

site’s gene of virulence that allows it to overcome the host’s resistance and invade its

tissues. For this reason, plant breeding has traditionally coped with resistance collapse

through the accumulation of genes encoding host resistance. This process of gene accu-

mulation, which has been called gene pyramidation [16], lowers the probability of para-

site adaptation by increasing its virulence because the accumulation of virulence genes

in a parasite generally decreases its fitness in its environment and, as a consequence,

decreases its likelihood.

Conversely, in the case of cancer cell resistance to drugs, the more complex the pro-

tein network, the more alternative escape routes/pathways it has compared to a specific
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target inhibition. The fact that susceptibility of malignant cell lines is always higher for

target-specific than cytotoxic drugs suggests that drug development efforts should be

concentrated on target-specific drugs and combinations thereof. Thus, it is natural to

expect the development of resistance to specific drugs by malignant cell according to

the gene-for-gene or, here, the gene-for-inhibitor concept. Following this logic, one may

consider a gene-for-inhibitor relationship in the case of malignant cell lines vis-à-vis

drugs. Accordingly, formulating drugs into a cocktail should overcome malignant cell’s

resistance, which is actually one of the modern therapeutic trends [6, 7]. However, for-

mulating a drug combination should also account for the dose-limiting negative side

effects for normal cells and to protect the immune system’s integrity. Thus, we first

seek the most probable protein targets (top-5) for drug inhibition in order to maximize

the patient benefit from such a therapeutic combination. Top-5 is justified by the fact

that more than five drugs cannot be realistically fit within one drug capsule. Of course,

drugs could be administrated in several capsules or through intravenous injections.

However, such developments should be seen in the scope of clinical trials that we do

not address here.

The concept of patient benefit maximization is closely related to the choice of protein

targets that act as connectivity hubs in the signaling pathway, but are up-regulated in

malignant cells compared to normal cells in order to minimize deleterious side effects

for the patient’s health. We found that in the majority of cases, one hub-specific drug

would be enough to bring the 5-year survival expectancy close to that of normal cells,

based on entropy calculations. When the benefit of 5-year survival is estimated to

exceed 100 %, it simply means that the benefit should be seen in more than 5-year sur-

vival expectancy, i.e., 10-year survival expectancy, which is now the state of the art in

breast cancer statistical evaluation.

In general, it is hard to determine what cocktail should be applied to maximize the

10-year survival expectancy and minimize deleterious side effects on patients. Cur-

rently, the only way to shed light on this issue is through a trial-and-error experimenta-

tion. However, drug combinations from Table 4 could be good starting points based on

rational arguments and they can be evaluated immediately in clinical trials since most

of the drugs involved are already approved. Interestingly, without taking clinical consid-

erations into account, our investigation shows that fusicoccin should be a basic cocktail

component, which should be complemented with other drugs according to the specific

breast cancer type developed by the patient in order to maximize the 10-year survival

expectancy, which opens an important avenue for personalized medicine.

Conclusions
The response rate to a chemotherapeutic drug treatment may be relatively low in a

population of unselected patients. To improve the effectiveness of cancer therapies, a

repurposing strategy should include tumor phenotype characterization by molecular

techniques in order to design a treatment regimen optimal for the patient outcome.

We found that the susceptibility of malignant cells to drugs that are specific for their

target is negatively correlated with the entropy of their protein-protein interaction net-

work, which implicitly means that malignant cell resistance to specific drugs is due to

the larger number of potential alternative routes in their signaling network. The conse-

quence of the positive correlation between protein network entropy and malignant cell
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resistance to specific drugs is that drug cocktails addressing a large number of protein

targets are expected to be more effective for the treatment of malignant cell lines with

high entropy levels than cocktails targeting only a few proteins. We show that the best

protein targets to be addressed for drug development are those (i) whose entropy is

large (interaction hubs) and (ii) that are up-regulated in malignant cells compared to

normal cells. It is easy to understand that the larger the interaction rate of a protein

hub is, the greater its inactivation effect will be on the protein network. It is also readily

appreciated that the inactivation of up-regulated hub targets in malignant cells com-

pared to normal ones is more beneficial to the patient because this will minimize nega-

tive side effects of a drug treatment. Since specific drugs are more potent and

potentially safer than cytotoxic ones, we propose a rational methodology based on pro-

tein network entropy to choose the best cocktail of specific drugs according to the pro-

tein profile of malignant cells for a given tumor. Our approach differs from the

traditional drug repurposing since it allows the application of personalized therapies

that should affect essential breast cancer pathways resulting in malignant cell death

with minimal side effects for normal cells. In addition, the strategy outlined here should

be easy to extend to the personalized therapy of other cancer types.
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