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Abstract

Background: In analysis of nonstationary nonlinear signals the classical notion of
frequency is meaningless. Instead one may use Instantaneous Frequency (IF) that can be
interpreted as the frequency of a sine wave which locally fits the signal. IF is meaningful
for monocomponent nonstationary signals and may be calculated by Hilbert
transform (HT).

Methods: A multicomponent signal may be decomposed into its monocomponents.
Empirical Mode Decomposition (EMD), developed by Norden E. Huang, is a new method
of such breaking down of a signal into its monocomponents. EMD combined with HT
(called Hilbert-Huang Transform) is a good tool for analyzing nonstationary signals, but
unfortunately the traditional EMD algorithm consumes a lot of time and computer
resources. I propose a modified EMD algorithm - SlidingWindow EMD, SWEMD.

Results: Proposed algorithm speeds up (about 10 times) the computation with
acceptable quality of decomposition.

Conclusions: SlidingWindow EMD algorithm is suitable for decomposition of long
signals with high sampling frequency.

Keywords: Empirical Mode Decomposition; EMD; Fast EMD; Sliding Window Empirical
Mode Decomposition; SWEMD; Signal analysis

Background
Empirical Mode Decomposition (EMD) is a new method of analyzing nonlinear non-
stationary signals. It was proposed by Norden E. Huang in 1996 [1]. EMD is an
entirely data-driven algorithm and it does not depend on any predefined basis func-
tions. EMD breaks down nonstationary, multicomponent signal into its monocompo-
nents. Such monocomponents are called Intrinsic Mode Functions (IMFs) (see subsection
‘Intrinsic mode function’). Analyzing long signals with EMD is time consuming or
even impossible in reasonable time due to the fact, that spline interpolation of large
number of points takes a lot of computer resources. For such signals ’classical algo-
rithm’ needs some modifications. There are several modifications of EMD improving
its performance. C. D. Blakely developed FastEMD method [2]; instead of cubic spline
interpolation, matrix-free moving least-squares approximation is used. Q. Chen et al.
proposed representing of IMFs as B-splines [3]. This method was tested on earthquake
records. It decomposes signal into more modes than ‘classical’ EMD so it gives better
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frequency resolution. Unfortunately authors did not give information about time perfor-
mance of this method. S. Meignen and V. Perrier [4] eliminate sifting process (subsection
‘EMD algorithm’) by calculating IMFs through the resolution of a quadratic programming
problem with equality and inequality constraints. This method should greatly acceler-
ate decomposition of short signals (no sifting iterations), but for long signals it can take
longer than ‘classical’ EMD (quadratic optimization problem is solved in polynomial time,
spline interpolation is solved in linear time). A. Roy and J. F. Doherty [5] use the raised
cosine filter based interpolation instead splines, RCEMD. They tested it on signal being
a superposition of two harmonics with different frequencies. Depending on harmonic
separation complexity (the ratio of the frequencies), calculations were performed from 0
to 10 times faster than when using the ‘classical’ method. Their method also needs lower
sampling rates of signal than the ‘classical’ EMD [6]. Further investigation of this method
[7] shows that RCEMD algorithm is generally faster than EMD for short signal, so the
authors developed windowed version of RCEMD which speeds up calculation about 10
times.
For long data sets, I suggest to calculate EMD in a small window and to slide this win-

dow along the time axis (Sliding Window EMD, SWEMD) [8]. In this paper I describe
proposed algorithm (subsection ‘Sliding Window Empirical Mode Decomposition’),
test its performance (subsection ‘Performance of SWEMD’) and quality (subsection
‘Quality of SWEMD’). Then I compare time-frequency characteristics of specimen sig-
nals obtained by my algorithm, with those obtained by ‘classical’ EMD and those obtained
by typical calculation of EMD in time windows (subsection ‘Quality of SWEMD’).

Methods
Empirical Mode Decomposition

Intrinsic mode function

EMD decomposes signal into, so called, intrinsic mode functions (IMFs). Each IMF is a
signal that must meet the following criteria [1]:

• the number of extrema and zeros are equal or their difference is not greater than 1,
• the signal has “zero mean” - the mean value of the envelope determined by maxima

and the envelope determined by minima is equal 0 at every point.

These conditions show the essence of the EMD decomposition: non-stationary signal
is decomposed into symmetrical oscillations around zero amplitude, which are easy for
further analysis.

EMD algorithm

The first step of the EMD algorithm [1,9] is extraction of extrema from original signal
x(t) end creation of the upper envelope emax by cubic spline interpolation of maxima and
of the lower envelope emin by interpolation of minima (Figure 1a). Then mean value of
envelopes is calculated:

m(t) = emax + emin
2

. (1)

The mean value from Eq. 1 is subtracted from original data:

imf1(t) = x(t) − m(t). (2)

Above procedure is called sifting process.
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Figure 1 Main steps of EMD: a) start of decomposition, b) end of decomposition of first IMF, c) start of
second IMF decomposition [10].

Then imf1(t) is treated as input data for next sifting process. Mean value m(t) of
envelopes of imf1(t) is calculated and this value is subtracted from imf1(t):

imf1(t) := imf1(t) − m(t), (3)

where ′ :=′ means it becomes.
Sifting process is iterated till imf1(t) fulfills conditions of IMF signal ((Figure 1b), see

subsection ‘Intrinsic mode function’). When the first sifting process is finished (see sub-
section ‘Sifting process stopping criteria’) then the original signal is reduced by the first
mode (Figure 1c):

IMF1(t) := imf1(t) (4)

r1(t) = x(t) − IMF(t). (5)

The residue r1(t) of subtraction (5) is treated as input data for extraction of second IMF
(next sifting loop). Procedure is looped to extract all IMFs:

ri(t) = ri−1(t) − imfi(t), (6)
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where i is index of current mode. Decomposition is finished when residue ri(t) has less
than three extrema (there is no possibility to construct envelopes) or all its points are
nearly equal zero.
The sum of all IMF components and the residue gives the original signal:

rn +
n∑

i=1
imfi(t) = x(t), (7)

where n is number of all modes.
Algorithm of EMD is shown, as a block diagram, in Figure 2.

Sifting process stopping criteria

According to the second criteria of IMF, the mean of its envelope is equal to 0 at every
point of IMF. In fact, it is very difficult to get numerically this value equal to zero at every
point. What is needed is an approximation. In my work I use the stop conditions of the
sifting procedure proposed by Rilling et al. [9]. In each iteration ratio of the mean value
of the envelope of iterated mode and the amplitude of this envelope is checked:

σ(t) =
∣∣∣∣m(t)
a(t)

∣∣∣∣ , (8)

where:

m(t) = emax(t) + emin(t)
2

; a(t) = emax(t) − emin(t)
2

(9)

and emax is the upper envelope, emin - the lower envelope.
There are two thresholds:

• θ1 - guaranteeing globally small fluctuations of the envelopes’ mean around zero,
• θ2 - locally allowing higher fluctuations.

Sifting process is stopped if σ(t) < θ1 is true for (1 − α) part of the number of signal’s
points, and if σ(t) < θ2 is true for the rest of points. Typical values for these parameters
are as follows:

α = 0, 05; θ1 = 0, 05; θ2 = 10 · θ1. (10)

These values of parameters allow a compromise between quality and speed of decom-
position process.

Hilbert-Huang spectrum

Signal decomposed into IMFs can be further analyzed with time-frequency characteristic
by obtainingHilbert-Huang spectrum. For this purpose, the analytic signal is created from
each EMDmode:

imfak (t) = imfk(t) + jH[ imfk(t)] (11)

where H(imfk(t)) is Hilbert transform of k-th IMF and j means imaginary part. Hilbert
transformis defined as:

H[ x(t)]= 1
π
P

∞∫
−∞

x(t′)
t − t′

dt′, (12)
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Figure 2 Flowchart of EMD algorithm [10].

where P denotes Cauchy principal value:

P
∞∫

−∞
f (x)dx = lim

ρ→∞

ρ∫
−ρ

f (x)dx. (13)

From analytic signal the instantaneous amplitude can be obtained as a module of this
signal:

ak(t) = ∣∣imfak (t)
∣∣ (14)
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and the instantaneous frequency as a differential of argument of this signal:

fk(t) = 1
2π

d arg(imfak (t))
dt

. (15)

The sum of all modes’ instantaneous frequencies and amplitudes gives the Hilbert-
Huang Spectrum (HSS):

HHS(fk , t) = Re
[ N∑
k=1

ak(t)j
∫
fk(t)dt

]
. (16)

With HHS, the marginal Hilbert-Huang Spectrum can be calculated. It gives informa-
tion about the contribution of a given frequency to the total power and is defined as
follows:

hhs(fk) =
∞∫

−∞
HHS(fk , t)dt. (17)

SlidingWindow Empirical Mode Decomposition

SlidingWindow EmpiricalMode Decomposition, SWEMD, is based on calculation of EMD
in a relatively small window and sliding this window along the time axis [8,10]. Size of
the window depends on the signal’s frequency band - there must be at least 5 maxima
and 5 minima in the window for correct spline interpolation. To prevent possible discon-
tinuities in IMFs between windows, the total number of modes and also the number of
sifting iterations must be set a priori [9]. The number of sifting steps should be tailored
for each module. These parameter depends on the sampling frequency and on analyzed
signal, its complexity and spectrum. The empirical determination of these values can be
difficult. Thus, I propose a simple algorithm for determining the number of sifting iter-
ations: decomposition of several signal’s windows by classic algorithm and counting the
average number of sifting steps for each mod.
The block diagram of SWEMD algorithm is displayed in Figure 3. To eliminate possible

windows’ boundary effects, surroundings points (S in Figure 3) are added to the begin-
ning and end of the window. I suggest to use the number of surroundings points equal to
the size of the window or its multiple. EMD sifting process is done on the window and
surroundings part of the data. Calculation of all the modes in the window at time t is
called SWEMD step.
During calculation performed on the subsequent modes in a SWEMD step, it may occur

(especially for modes containing low frequencies) that the window size is too small for
spline interpolation (not enough extrema). In such a case, the calculation for this mode
(and the next modes) is canceled in this SWEMD step. In the next step these modes will
be calculated in a longer window. Therefore, in the implementation of the algorithm, the
table for storing indices of the windows’ start point is used (Ind in Figure 3). If extraction
of mode M in SWEMD step at time t is successful then the array element corresponding
to the given mode (Ind[M]) is assigned the value of the last window point: t + win. In
a case of too small number of extrema, Ind[M] remains unchanged, therefore, the size of
the window in the next step will be greater by win points from the basic size: win.
The calculation of the mode M in the SWEMD step begins with extracting from the

analyzed signal y points corresponding to the window in time t and its surroundings (in
Figure 3 these data are assigned to the variable R). Then, in order to prepare input data for
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Figure 3 Flowchart of SWEMD algorithm [10].
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Figure 4 Performance of SWEMD.

calculation of the modeM, the signal R is reduced by the IMFs of orders lower thanM (in
Figure 3 block labeled “Prepare data for calc. Current mode”). Prepared data are subjected
to the sifting process. If there is not enough extrema, calculations in this SWEMD step are
interrupted and the counting of the first IMF in the next step (t + win) is started. If the
sifting process is completed correctly, the resulting mode (after discarding surroundings)
is placed in the array imf[.,.] (Figure 3) that stores IMFs at appropriate indices. Then, the
value of the start point of the window for the modeM in the next SWEMD step is changed
and a process of calculating the module M +1 is started or current step is completed (if
modeM was the last to achieve).

Figure 5 Quality of SWEMD algorithm: difference in mean amplitudemarginal spectra of SWEMD and
EMD and 95% confidence interval.
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Results and discussion
Performance of SWEMD

Performance was tested on several EEG signals with different length. Figure 4 shows the
comparison of the time of calculation SWEMD algorithm to ‘classical’ EMD depending
on the length of the analyzed signal. Proposed algorithm performs calculations about 10
times faster.

Quality of SWEMD

In order to verify the quality of the proposed algorithm I compared the results SWEMD
and ‘classical’ EMD. The test consisted of the following steps:

• decomposition of the test EEG signal using EMD and SWEMD;

Figure 6 Comparison of SWEMD analysis with classical EMD and withwindow EMD. (a) Superposition of
two chirps (signals with a linear frequency change), (b) its HSS obtained with three EMD algorithms.
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• calculation of the marginal Hilbert-Huang spectrum for both EMD and SWEMD in
time windows length of 10 seconds (the same window was used in the calculations of
SWEMD);

• calculation of the difference of the EMD and SWEMD marginal spectra’s mean
amplitudes and the standard deviation of this difference;

• designate 95% confidence interval [11] for this difference

The test was performed on several EEG signals. The specimen results of the quality test
of the algorithm SWEMD is shown in Figure 5. As it is seen in Figure 5 the difference in the
amplitudes of marginal spectra of EMD and SWEMD at any point is approximately zero
(solid line in Figure 5), and lies in the 95% confidence interval (dotted line in Figure 5).
Therefore the results of both algorithms are statistically consistent.

Figure 7 Comparison of SWEMD analysis with classical EMD and withwindow EMD. (a) Frequency
modulated signal, (b) its HSS obtained with three EMD algorithms.
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I also compared results of SWEMD analysis with classical EMD and with concatenated
results of calculation of EMD in windows (window EMD) on simple signals.

Superposition of two chirp signals

Superposition of two chirps (signals with a linear frequency change) is shown in Figure 6a.
Hilbert-Huang spectra calculated with three EMD algorithms: classical, SWEMD, and cal-
culation of EMD in windows are compared in Figure 6b. Results of SWEMD are the same
as EMD. Simple calculation in windows shows very strong boundary effects.

Frequencymodulated signal

Frequency-modulated signal is shown in Figure 7a. The carrier frequency is 20 Hz, sig-
nal is modulated with 2 Hz sine. Figure 7b compares results of Hilbert-Huang spectra

Figure 8 Comparison of SWEMD analysis with classical EMD and withwindow EMD. (a) Superposition of
two frequency modulated signals, (b) its HSS obtained with three EMD algorithms.
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obtained using three different EMD algorithms. SWEMD results show very small window
boundary effects compared to typical windowing of EMD.

Superposition of two FM signals

Figure 8a shows superposition of signal from Figure 7a with another FM signal (the carrier
frequency is 10 Hz modulated with 0.5 Hz). Results in Figure 8b are similar for SWEMD
and EMD but window EMD gives greater errors, especially in decomposition of signal
with 10 Hz carrier frequency.

Superposition of two harmonics

Superposition of two sines 101 Hzand 103 Hz is shown in Figure 9a. Such superposition
gives 102 Hz signal amplitude modulated with 1 Hz. Also for this signal SWEMD, unlike
typical calculation in windows, gives the same results as ‘classical’ EMD (Figure 9b).

Figure 9 Comparison of SWEMD analysis with classical EMD and withwindow EMD. (a) Superposition of
two harmonics, (b) its HSS obtained with three EMD algorithms.
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Conclusions
Before using the classical EMD one needs to consider whether multiple spline interpo-
lation does not take too much time. In particular this applies to analysis of long signals
or acquisition systems with high sampling frequency or a large number of channels.
Proposed algorithm, Sliding Window EMD, can speed up computation about 10 times.
Examples of using SWEMD presented in this article show that it has similar quality as
classical EMD - boundary effects in typical windowing are nearly completely reduced in
SWEMD. Proposed algorithm is suitable also in real time analysis of data.
To compare the performance of ‘clasicall’ EMD method and its modifications [2-5]

including SWEMD it would be necessary to apply all these methods to the same set of
signals.
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