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Abstract

Background: In this paper the interactions between paclitaxel, doxorubicin and the
metabolic enzyme CYP3A4 are studied using computational models. The obtained
results are compared with those of available clinical data sets. Analysis of the
drug-enzyme interactions leads to a recommendation of an optimized
paclitaxel-doxorubicin drug regime for chemotherapy treatment.

Methods: A saturable multi-compartment pharmacokinetic model for the multidrug
treatment of cancer using paclitaxel and doxorubicin in a combination is developed.
The model’s kinetic equations are then solved using standard numerical methods for
solving systems of nonlinear differential equations. The parameters were adjusted by
fitting to available clinical data. In addition, we studied the interaction of each drug
with the metabolic enzyme CYP3A4 through blind docking simulations to demonstrate
that these drugs compete for the same metabolic enzyme and to show their molecular
mode of binding. This provides a molecular-level justification for the introduction of
interaction terms in the kinetic model.

Results: Using docking simulations we compared the relative binding affinities for the
metabolic enzyme of the two chemotherapy drugs. Since paclitaxel binds more
strongly to CYP3A4 than doxorubicin, an explanation is given why doxorubicin has no
apparent influence upon paclitaxel, while paclitaxel has a profound effect upon
doxorubicin. Finally, we studied different time sequences of paclitaxel and doxorubicin
concentrations and calculated their AUCs.

Conclusions: We have found excellent agreement between our model and available
empirical clinical data for the drug combination studied here. To support the kinetic
model at a molecular level, we built an atomistic three-dimensional model of the
ligands interacting with the metabolic enzyme and elucidated the binding modes of
paclitaxel and doxorubicin within CYP3A4. Blind docking simulations provided
estimates of the corresponding binding energies. The paper is concluded with clinical
implications for the administration of the two drugs in combination.
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Background

World Health Organization (WHO) statistics show that 12.5% of the deaths worldwide
result from cancer related malignant neoplasms [1]. Thus, a critical need exists for effec-
tive treatments against these illnesses. Chemotherapy is the treatment of cancer using an
anti-neoplastic drug or a combination of such drugs. There are more than one hundred
distinct chemotherapy drugs approved for use in North America and Europe that can be
divided into approximately ten categories. The first group consists of alkylating agents
such as cisplatin. There are approximately twenty five different drugs in this group, which
are genotoxic to the tumor cells. The second group contains plant alkaloids such as pacli-
taxel. There are approximately fifteen different drugs in this group and they inhibit the
mitosis of the tumor cells. The remaining groups of chemotherapy agents are not relevant
to the topic of this paper and hence will not be discussed. Combination cancer chemother-
apies have shown to be more effective than mono-chemical therapy, with varying degrees
of success. However, the question: “how can one best improve the outcome for a patient by
changing the application frequency of a particular drug or by using a combination of drugs”
has not been extensively studied in quantitative detail and it merits significant attention.
The outcome of any therapy always involves both benefits and costs. The benefits can be
measured in terms of the patient survival probability or the average time to recurrence.
The cost can be assessed by the severity and frequency of side effects. Unfortunately, can-
cers are a set of very complex diseases for which finding cures has been extremely elusive.
Part of the complexity describing cancer can be attributed to the unique and complicated
signalling pathways leading to cancer initiation and progression at the level of individual
cancer cells. Detailed maps of the signalling pathways have been found for a number of
cancers and are catalogued in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (http://www.genome.jp/kegg/). A typical KEGG pathway illustrates the molec-
ular interactions and reaction networks for metabolism, various cellular processes, and
human diseases (see [2-4]). For example, Figures 1 and 2 have been adapted from KEGG
to illustrate two concrete examples how some of the available cancer chemotherapy drugs
inhibit the cancer cell signaling pathways and how redundancies present in the signaling
process complicate the situation.

The accumulating knowledge about the molecular biology of cancer and novel delivery
tools to specifically target aberrant proteins are opening up new therapeutic possibili-
ties. One of the most common methods of increasing cure rates using chemotherapeutic
agents is to administer combination chemotherapy which most often refers to the simul-
taneous administration of two or more medicinal compounds or modalities to treat a
single disease. This approach in cancer treatment can be traced back to 1965 when
James Holland, Emil Freireich, and Emil Frei hypothesized that cancer chemotherapy
should follow the strategy of antibiotic therapy for tuberculosis and use combinations
of drugs, each with a different mechanism of action. Cancer cells could conceivably
mutate to become resistant to a single agent, but by using different drugs concurrently it
would be more difficult for the tumor to develop resistance to the combination. Holland,
Freireich, and Frei simultaneously administered an antifolate, a vinca alkaloid, 6-MP
and Prednisone - referred to as the POMP regimen - and induced long-term remis-
sions in children with ALL. This approach was extended to the lymphomas and other
types of cancer. Currently, nearly all successful cancer chemotherapy regimens use this
paradigm of multiple drugs given simultaneously. Some types of cancers, previously
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Figure 1 Lung cancer signaling pathways. The red and blue dots illustrate the action of chemotherapy

universally fatal, are now considered to be generally curable diseases as a result of this

advance.

Current clinical trials in oncology commonly focus on three key aspects: (a) extend-
ing the scope of known drugs to new types of cancer, (b) testing new compounds,
and (c) optimizing treatment by using combinations of known compounds. The latter
aspect is of great interest and could benefit from a mathematical modelling approach
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Figure 2 Pancreatic cancer signaling pathways. The red and blue dots illustrate the action of
chemotherapy agents blocking the pathways.
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aimed at achieving an optimized set of parameters for the dose, frequency and route
of administration. This is, indeed, one of our main objectives behind the present
work.

Two of the most widely used chemotherapy agents are paclitaxel and doxorubicin.
Paclitaxel [5] is active against many human solid tumors related to breast cancer, ovar-
ian cancer, non-small cell lung cancer, head and neck cancer, and advanced forms of
Kaposi’s sarcoma [6]. Because it is poorly water-soluble, the current formulation for Taxol®
incorporates a 6 mg/ml solution in a solvent consisting of 50% polyoxyethylated cas-
tor oil (Cremophor® EL-CrEL) and 50% dehydrated alcohol (USP). Paclitaxel is typically
administered by IV infusion over one or three hours but has also been administered
over six and twenty four hours. Because a patient may have an anaphylactic reaction
to CrEL, alternative formulations of paclitaxel have been introduced, including BMS-
184476, oral paclitaxel in polysorbate 80, and ABI-007, Genexol-PM [7] and Abraxane’
(nab-paclitaxel) [8]. Paclitaxel has a long residence time within the body and can stay
trapped in cancer cells for over a week [9]. Paclitaxel is also highly bound to CrEL micelles,
plasma proteins, platelets, and red blood cells [10].

DNA intercalators inhibit DNA polymerases and topoisomerases, resulting in the
induction of apoptosis in tumor cells. DNA intercalating agents, such as amsacrine, acti-
nomycin, mitoxantrone, and doxorubicin, have been employed as anticancer drugs and
are in routine clinical use as chemotherapeutic agents [11]. It is well accepted that the
antitumor activity of doxorubicin is caused by the formation of a cleavable complex of
topoisomerase II, resulting in apoptosis [12,13]. Doxorubicin is indicated in the treatment
of a broad spectrum of solid tumors (e.g. breast, bladder, endometrium, thyroid, lung,
ovary, stomach, and sarcomas of the bone) and in the treatment of lymphoma, as well
as acute lymphoblastic and myeloblastic leukemias [14]. One of the most important and
clinically relevant side effects of doxorubicin is the induction of cardiomyopathy [15]. A
number of mechanisms have been proposed to explain this effect of doxorubicin, includ-
ing oxidative stress [16], the induction of mitochondrial damage [17], and changes in gene
expression in cardiac myocytes and muscle cells in general [18,19].

Pharmacokinetics is the study of the absorption, distribution, metabolism and elimi-
nation (ADME) of drugs to, in, and from the body [20]. Pharmacological data usually
consist of discrete values of the concentration of a drug in the plasma as a function of
time. For drugs administered by direct intravenous (IV) infusion, a plot of these val-
ues generates a concentration-versus-time curve that rises during the infusion and then
decreases after a maximum concentration value is reached. This decline may be relatively
short or may last for several days, and it is mainly governed by the rate of elimination of
the drug from the body. One of the key questions investigated is the functional depen-
dence of the elimination curve and a single parameter that is often used to characterize
the drug, namely its half-life. Another parameter of interest is the power law exponent of
the elimination curve, which provides important information about the fate of the drug
in the body and its efficacy. During clinical trials, the concentration-versus-time curves
are used to determine optimum dosing regimens, potential toxicities, and drug-drug
interactions.

The most common type of pharmacokinetic model is the compartmental model [20],
in which a compartment is characterized by the number of drug molecules having the
same probability of undergoing a set of chemical kinetic processes. The exchange of drug
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molecules between compartments is described by kinetic rate coefficients. Consider a
one-compartment model post-infusion, such that
ax
at

where k is the kinetic rate coefficient describing the elimination process. If the compart-

—kX, (1)

ment is homogeneous and instantaneously-mixed (well-stirred), the kinetics are classical
and

k =k, (2)
where k, is a constant. The resulting solution has an exponential tail,
X(t) = Xoexp [—k(t — to)]. 3)

Inhomogeneous compartments require a non-linear model and have been recently
modeled using fractal kinetics [21,22] with a time-dependent kinetic rate coefficient:

k() = kot ™", (4)

where 7 is a fractal exponent, which is related to the fractal dimension of the organ in
which the process takes place. The resulting solution has a stretched exponential tail,
[ —k, (tl_” - t(}’”)

X(t) = X, exp . , (5)

if n # 1. In the case n = 1, the solution is a power-law relationship,

t, 1%
X)) =X, [: ) (6)

Saturable kinetics is usually modeled using Michaelis-Menten kinetics [23], where the
differential equation describing a single compartment becomes

DX @)

dt Ky + X
The quantity V4, is the maximum rate of elimination, and Ky, is the amount of drug
required to achieve half the maximum rate of the process (i.e. when X = Kj; then
the rate of drug elimination is; ‘(% = —%Vmax. At very low dosage, the rate of elim-
ination is given approximately by ‘% ~ 7‘%:’“ = —kX. Hence the model gives the

standard expression for the rate of elimination at low dosage, and as the amount of drug
increases the rate of elimination becomes a constant. The corresponding amount of drug
versus time curve exhibits an initial linear segment (high dosage) followed by an expo-
nential tail at low concentrations. The implicit solution to Equation 7, assuming constant

parameters, is

X
Ky ln |:Xi| + X —Xo = —Vipax(t — o). (8)

0

A more complex single-compartment saturable model, which produces fractal effects,

is given by the kinetic equation
AX  —VipaX®

ar ) 9
dt Ky +X? ©)
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which has the following exact solution, assuming constant parameters

1— 1— 1+b— 1+b—
X ﬂ_Xou X+ a_Xo+ a
l1—a 1+b—a

I(M = _Vmax(t - to)' (10)

The implicit solution in Equation 10 must be modified for two special cases. The first
special case is when a = 1, the first term must be replaced with KjsIn [%] The second

special case is when a — b = 1, the second term must be replaced with In [X%]

Figure 3 graphically illustrates the solution given in Equation 10. In this figure; £, = 1
hr, X, = 10 umol/L, a = b, V4, = 18.80 umol/(L hr), and Kj; = 5.50 (umol/L) are
taken as an illustrative example.

A single compartment model is clearly insufficient to capture the complexity of the
pharmacokinetic and pharmacodynamic data exhibited by multi-drug chemotherapy.
We believe that the simplest non-trivial model required for this purpose is a multi-
compartment model in which the compartments are saturable due to the limitations on
the number of enzymes and the molecular targets available for drug binding. The num-
ber of compartments considered for the modeling of the multi-drug pharmacokinetics
of cancer chemotherapy agents should be at least four, namely: (1) the blood/plasma
compartment, (2) the elimination organs compartment, (3) the healthy cells compart-
ment, and (4) the tumor cells compartment. Compartment 1 represents the blood/plasma
and is the mechanism for the transportation of the drug molecules throughout the
body. Compartment 2 represents the liver and elimination organs, in which a portion
of the drug is metabolized while the remaining drug is excreted from the body. Com-
partment 3 represents the healthy cells in the body and allows for a measure of the
toxicity of the drugs. Compartment 4 represents the tumor cells. This model is clearly
not as powerful as a physiologically-based approach that requires more detail as well as
more model parameters describing its many compartments. However, we have decided
to use the current four-compartment model to maintain simplicity in order to focus
on the issue of drug interactions rather than the model’s physiological relevance and
accuracy. We believe this model represents a compromise between simplicity and real-
istic representation of the PK system. This four-compartment model is illustrated in
Figure 4.

10.00

1.00 - k!

0.50 - b

0.10 i

0.05 - b

Concentration (ymol/L)

I I I I I I I I
1.0 L5 20 3.0 50 7.0 10.0 150 20.0 30.0

Time (h)
Figure 3 Nonlinear saturable kinetics. The concentration-versus-time curve of the saturable kinetics

example in the text for the solution given in Equation 10 with a = 0.75 for the black curve, a = 1 for the
green curve, and a = 2 for the red curve.
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Figure 4 Four-compartment pharmacokinetic model. The four compartments in the pharmacokinetic
model presented in this paper: (1) the blood/plasma compartment, (2) the elimination organs compartment,
(3) the healthy cells compartment, and (4) the tumor cells compartment.

The model presented here assumes well-stirred conditions, i.e. average drug concentra-
tions in the various compartments are the only dependent variables. The mathematical
model corresponding to Figure 4 is represented by a set of first-order (nonlinear)
differential equations given by

A(i,k,j A(i,j,k)
axXi; I ! I<i,k,/Xi,/<(l 7 KijuX;; " 1
g T > BGkj) B0 |’ (11)
i—o | 1+ Fi,k,le',k 1+ Fi,j,kXi,j

where X;; is the concentration of drug i in compartment j, [;; is the rate of infusion
divided by the volume of distribution of drug i in compartment j, compartment 0 (k = 0
in the Equation 11 sum) is the environment external to the body, K is the kinetic
rate coefficient for drug i moving from compartment j to compartment k, I';;x is the
saturation coefficient for drug i moving from compartment j to compartment k, and
A(i,J, k) and B(i, , k) are the fractal exponents for drug i moving from compartment j to
compartment k.

The primary motivation for this paper is to quantitatively understand the combined
action of paclitaxel and doxorubicin in view of the reported interactions when these
drugs are administered simultaneously. Namely, it has been demonstrated that the com-
bination of doxorubicin followed by infusion of paclitaxel has high antitumor activity in
patients with metastatic breast cancer, but is strongly limited by the associated cardiac
toxicity [24]. The question that arises is how these side effects can be reduced by opti-
mal mode of administration of the two drugs. This requires careful analysis and model
development. Both paclitaxel and doxorubicin are known to be substrates for specific
metabolic enzymes. Such interactions with the metabolic enzymes raise the risk of alle-
viating their associated toxicity and inducing unpredictable adverse side effects due to
metabolites. Given this clue, here we develop a predictive model of the pharmacokinetic
and pharmacodynamic interactions between paclitaxel, doxorubicin and the metabolic
enzymes in the body during multi-drug chemotherapy. Our pharmacokinetic model
can be used in aiding the design of optimized dosage and scheduling of the two-drug
combination.
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In this paper, we discuss the results obtained at both levels of computational modeling:
pharmacokinetics of the two drugs under investigation and molecular dynamics of their
interactions with the metabolic enzyme.

Methods

Below is a short description of the pharmacokinetic model mentioned above. The model
focuses on the interactions of paclitaxel and doxorubicin with a common metabolic
enzyme for the two compounds. To gain further understanding of these interactions at the
molecular level, we performed a blind docking simulation protocol, which was employed
to predict the binding sites, modes of binding and binding energies of the two drugs to
the CYP3A4 metabolic enzyme. This was intended to explain at a molecular level why
these two drugs affect each other’s pharmacokinetic profiles. Below is a description of
the modeling techniques used both for pharmacokinetic analysis and molecular dynamics
simulations of the two drugs, paclitaxel and doxorubicin.

Pharmacokinetic modeling

The mathematical model corresponding to Figure 4 is Equation 11, which represents a
system of nonlinear differential equations and in general, the kinetic rate coefficients do
not have units of inverse time. Only in the special cases when all of the A’s are equal
to one and the drugs have the same units in all the compartments, will the kinetic rate
coefficients have units of inverse time. We defined I as the rate of infusion divided by
the volume of distribution for the entire body, which is commonly known for most drugs
from empirical data. In our case the volume of distribution is an adjustable parameter
used to optimize fits to the available data sets. The volume of distribution for specific
organs would be desirable but is very hard to determine, especially for human patients.
We would require empirical data for the drug concentrations in several compartments in
order to generate reliable parameter fits.

The parameters in Equation 11 are determined by minimizing the weighted percentage
variance between the solution of Equation 11 and the clinical data. The weighted variance
was used because some of the clinical concentration values were for a single patient while
other clinical concentration values represented the mean value of the concentration for
multiple patients. A percentage ratio was used because the concentrations varied over
several orders of magnitude (approximately 0.01 to 10 micromoles per liter). The weighted

percentage variance is defined as;

0
4 Xij(te) — X (t)
VAR = ﬁ Zpl,i,i:k —l(;) (12)
P 1kji Xi,j(tk) + X,‘,}' ()

where X ;(#;) is the solution of Equation 11 for the concentration of drug i in compart-
ment j at time #. Xi(j-) (tx) is the concentration of drug i in compartment j at time #
from clinical study /. p;;;x is the wieghting coefficient, which is the number of patients
involved in study / used to measure and calculate the mean concentration Xg')(fk)~ N, =
>_1k,,i PLijk- In addition, the weighted variance is defined as;

1 OPINE
S= N Zpl,i,j,k [Xi,j(tk) - X (tk)] . (13)

P ki
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The initial starting values for the parameters in Equation 11 were assumed to be for a
linear system. i.e. the exponents were all set to one, the interaction parameters were set
to zero, and the saturation parameters were set to zero. The clinical half-life for each of
the studies was used to estimate the kinetic rate coefficients. The X;;(#;) in Equation 12
were determined by solving the system of first order differential equations using standard
numerical methods such as the Runge-Kutta Method. The maximum number of differ-
ential equations solved was fourteen for this system of drugs and their metabolites. The
weighted percentage variance, VAR, can then be calculated for this specific set of param-
eters. The kinetic rate coefficients, the saturation parameters, and the exponents are then
allowed to vary with the maximum number of parameters varying not exceeding the
number of clinical data values for the concentrations minus one. The appropriate values
for the parameters are obtained by finding the minimum value of VAR. The VAR can be
minimized by varying these parameters using the Powell’s Method in Multidimensions.

An additional aspect over and above pharmacokinetic modeling that enhances our anal-
ysis is the molecular-level understanding of the nature of interactions between each of
the two drugs and the metabolic enzyme CYP3A4. The latter effort requires an entirely
different modeling methodology, namely molecular dynamics, which is briefly described
below.

Molecular dynamics methodology

In order to determine if both doxorubicin and paclitaxel are substrates for the same
metabolic enzyme, we used blind docking combined with molecular dynamics simula-
tions to characterize the mode of action of the two drugs at the molecular level. We used
the human microsomal cytochrome P450 3A4 crystal structure (PDB: entry 1TQN) [25].
The catalytic active site was well-characterized and included a HEM group. Prior to dock-
ing simulations, protonation states of the residues constituting the CYP3A4 including
the HEM group were adjusted using the software PDB2PQR [25]. The protein structure
was conformationally relaxed using the NAMD molecular dynamics software with con-
straints on the backbone atoms. The AMBER99SB force field [26] was used for protein
parameterization, while the GAFF provided parameters for the HEM group.

To carry out the blind docking protocol, the entire surface of the CYP3A4 was divided
into 90 focus docking regions. For each region, the center of mass of three solvent exposed
neighboring atoms was used as the center of the docking box. The dimensions of the dock-
ing cube were 90 x 90 x 90 points with grid spacing of 0.03 nm. Clustering of the docking
poses was performed using a 0.2 nm RMSD cut-off. To identify the most preferred bind-
ing locations, we combined all docking results and ranked them with the lowest binding
energy of the largest docking cluster. As we are not only interested in the binding energies
as indicators for adequate binding, we defined a hit as the docking run that includes at
least 20% of the total population in its largest cluster. Finally, the solvent-exposed atoms
that were used to construct the docking boxes have been used as markers for the binding
locations.

All docking simulations were performed using AutoDock, version 4.0. Hydrogen atoms
were added to all CYP3A4 and the two ligands followed by assigning their partial atomic
charges using the Gasteiger-Marsili method. Atomic solvation parameters were assigned
to the protein atoms using the AutoDock utility ADDSOL. A docking grid map with
90 x 90 x 90 points and grid point spacing of 0.03 nm has been calculated using
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AUTOGRID program. The grid box was centered on the active site. Rotatable bonds of
each ligand were then automatically assigned using AUTOTORS utility of AutoDock.
Docking was performed using the LGA method with an initial population of 400 random
individuals, a maximum number of 10,000,000 energy evaluations, 100 trials, 50,000 max-
imum generations, a mutation rate of 0.02, a crossover rate of 0.80 and the requirement

that only one individual can survive into the next generation.

Results and discussions

Pharmacokinetics of doxorubicin

The pharmacokinetics of a drug varies quite significantly between people and even in an
individual person (pharmacokinetics will change with age and the health of the patient).
Ideally, we would want a pharmacokinetic model with parameter values for each individ-
ual patient and the analysis would then be optimized for that specific patient; however,
that is not practical. Therefore, we will calculate a set of parameters for a mean concentra-
tion versus time curve and obtain general qualitative features that will describe the people
in this group as a whole.

The first stage is to determine the pharmacokinetics of doxorubicin from its con-
centration versus time clinical data and determine the parameters within the model in
Equation 11 that fits this data without paclitaxel present. Equation 11 was fitted to sev-
eral sets of experimental data for doxorubicin. The total number of data points that were
digitized from the concentration-versus-time figures was 463. N, = 1335, where N, is
defined in Equation 12. The total number of parameters allowed to vary was sixty five,
but only forty nine parameters were used. The minimization of VAR in Equation 12 pro-
duced the forty eight parameters in Table 1 for doxorubicin. In addition, the volume of
distribution for doxorubicin was found to be Vp pox = 5.02 L/m?>. The Table 1 numbers
give a best fit to the doxorubicin data with the weighted percentage variance VAR = 0.24.
(The weighted variance is S = 0.45 micromoles squared per liter squared.) The com-
parison of each set of experimental data with Equation 11 using the parameters given in
Table 1 is given in Appendix A.

As an example, we have presented the data from Gianni et al,, Moreira et al., and
Benjamin et al. [27-29] in Figure 5, and plotted the model in Equation 11 for the dosage of
60 mg/m?> using the parameters in Table 1. The data from Gianni et al. [27] and Moreira
et al. [28] stops at twenty four hours because that is when paclitaxel is introduced to the

Table 1 The PK parameters for Equation 11 modeling doxorubicin

jik Apox,jk Bpox,jk Tpoxjk Kpox,j.k
1.78
—0017X78,

12 090 1.99 00005 877 m

13 1.08 171 00038 355 | e

14 1.97 096 0.0008 03541 + 00002227, | %
20 094 1.00 0.0000 0252

21 072 080 0.1466 0132 %

31 097 116 00242 00325 %

41 191 1.00 0.0000 0.0055 %
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Figure 5 Comparison of theoretical and experimental doxorubicin results. The concentration-versus-time
curve for doxorubicin. The black squares are the clinical data from Gianni et al. [27], the blue squares are the
clinical data from Moreira et al. [28]. The purple and pink squares are the clinical data from Benjamin et al.
[29]. The purple squares are for the acid alcohol data and the pink squares are for the chloroform data. The
curve represents the solution of Equation 11 using the parameters in Table 1.

patients in those two studies. There are two sets of data from Benjamin et al. [29]; the
pink data corresponds to chloroform being added to the extracted blood plasma and the
purple data is for when an acid alcohol is added to the extracted blood plasma. In theory,
these multiple patient studies should contain experimental data that overlaps along the
same curve, but clearly that is not the case. The clinical data for doxorubicin is inconsis-
tent from one study to the next with large variations in the results. The theoretical curve
gives a best-fit of the data.

The metabolite, doxorubicinol, is produced from doxorubicin by the cytochrome P450
isoenzyme CYP3A4, and its pharmacokinetics can also be modeled using Equation 11.
The total number of data points that were digitized from the concentration-versus-time
figures was 126. N, = 869, where N,, is defined in Equation 12. The total number
of parameters allowed to vary was fifty one, but only forty five parameters were used.
The minimization of VAR in Equation 12 for doxorubicinol produced the forty parame-
ters in Table 2 and five parameters in Equation 14. The weighted percentage variance is
VAR = 0.24 for doxorubicinol. (The weighted variance is S = 0.0012 micromoles
squared per liter squared for doxorubicinol). The combined weighted percentage variance
is VAR = 0.24 for doxorubicin and doxorubicinol. (The combined weighted variance is

S = 0.27 micromoles squared per liter squared for doxorubicin and doxorubicinol).

Table 2 The PK parameters for Equation 11 modeling doxorubicinol

jk ApoLjk BpoLjk Tpowjk Kpow,jk
14+105%357,
12 21 141 05836 121 | e
1+0967X}557
13 119 1.00 0.0000 341 ‘1 + 0.0702)(3381‘ W
20 079 136 18532 8.86|1 - 00228X2), |
140094343
2,1 1.03 1.08 85081 330 ‘1 + 0.0368)(58?2‘ W
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The rate at which doxorubicin is being converted into doxorubicinol was found to be:

0.224.x2%02
I —0.252X%% | 208 4 — DOL2 14
poL2 box.2 1+161X5% , e

The coefficient, 2.08, in Equation 14 represents the fraction of eliminated doxorubicin
in compartment 2 being converted into doxorubicinol times the volume of distribution
for doxorubicin divided by the volume of distribution for doxorubicinol. The comparison
between Equation 11 using the parameters in Table 2 and each of the experimental set of
data is given in Appendix A. As an example, we have presented the doxorubicin data and
doxorubicinol data from Andersen et al. [30] and Greene et al. [31] in Figure 6.

Note that some of the parameters for doxorubicin in Table 1 do not play a significant
roll in fitting Equation 11 to the clinical data. One of A parameters in Table 1 is close
to 1, and can be set to one. Two of the saturation parameters, I', are very small and two
are zero. In addition, the 0.0002 in row 1,4 can be set to zero. These parameters can
be ignored without losing much information. This would reduce the number of doxoru-
bicin parameters to 42. In the case of doxorubicinol, all the parameters in Table 2 have an
effect with one exception. The exponent A = 1.03 could be set to 1 without a significant
change to the results. Also, one of the three exponents in Equation 14, 0.98, is close to
one and could be set to one as well. This reduces the number of doxorubicinol parameters
to 43.

The best-fit parameters of doxorubicin and doxorubicinol in Tables 1 and 2 model all
the data reasonably well, but not with enough accuracy for a detailed study of specific
data sets because of the variations from one study to another as clearly shown in Figure 5.
In order to study the interaction between doxorubicin and paclitaxel we need an accu-
rate fit to the specific data set when there is no interaction between the two drugs. To
acheive this, we begin with the best-fit parameters for all the data sets given in Tables 1
and 2 and perturb these parameters to improve the fit to the specific data set. We have
adjusted and fitted the doxorubicin and doxorubicinol parameters to the clinical data
obtained by Gianni et al. [27] and Moreira et al. [28] separately. The Gianni et al. [27]
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0.05 - bl
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Figure 6 Comparison of theoretical and experimental doxorubicinol results. The concentration-versus-time
data for doxorubicin are represented by the squares and doxorubicinol data is represented by the triangles.

The red data is from Andersen et al. [30] and the green data is from Greene et al. [31]. The curves are from
Equation 11 using the parameters in Tables 1 and 2.
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study had 10 doxorubicin data points and 8 doxorubicinol data points, when there was
no paclitaxel present. The Moreira et al. [28] study had 10 doxorubicin data points and
10 doxorubicinol data points, when there was no paclitaxel present. N, = 144, for Gianni
et al. [27] and 560 for Moreira et al. [28],where N, is defined in Equation 12. We allowed
all the parameters in Tables 1 and 2 to vary to determine, which parameters required
the largest change. The result of fitting the theoretical model to the doxorubicin data of
Gianni et al. [27] is shown in Table 3, and fitting the doxorubicinol parameters is shown
in Table 4. The weighted percentage variance is VAR = 1.7 x 102 and the weighted
variance is S = 3.3 x 10~* micromoles squared per liter squared. The fit of the theoret-
ical model to the data of Moreira et al. [28] is shown in Table 5 for doxorubicin, and the
new doxorubicinol parameters are shown in Table 6. The weighted percentage variance
is VAR = 1.4 x 1072 and the weighted variance is S = 8.5 x 10~® micromoles squared
per liter squared. When relaxing the parameters to improve the fit with specific data, the
parameters for the rate at which doxorubicin is being converted into doxorubicinol are
changed in addition to the parameters in the tables. The new conversion rate for Gianni
et al. [27] was found to be:

i 0.358Xx 117
I —0.264X%33 |49 4~ “DOL2 | 15
DoOL2 DOX,2 1+16.5X5% , =

For Moreira et al. [28], the rate of conversion was found to be:

i 0.344X 187
I —0.264X138 3984 — DOL2 16
DOL,2 DOX,2 1+ 903X11)?)6L,2 ( )

The parameters for both studies needed very little change. The result of these theoreti-
cal fits are shown in Figure 7 for Gianni et al. [27] and Figure 8 for Moreira et al. [28]. The
agreement is very good as verified by the variance VAR and S defined in Equations 12 and
13, respectively.

Pharmacokinetics of paclitaxel

The pharmacokinetics of paclitaxel can be determined from its concentration-versus-
time curves as well. We have digitized the data from several experimental data sets for
paclitaxel and fitted to Equation 11. The number of clinical data points that were digi-
tized from the concentration-versus-time figures and used to determine the parameters
was 100. For these 100 data points N, = 820, where N, is defined in Equation 12. The

Table 3 The PK parameters for Equation 11 modeling doxorubicin for Gianni et al. [27]
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Table 4 The PK parameters for Equation 11 modeling doxorubicinol for Gianni et al. [27]

ik ApoL,jk Bpov,jk TpoLjk Kpov,jk
+106XDOL2
12 176 243 03371 140 | st
13 1.07 1.00 0.0000 392 ‘1 +0.1150X%38 ‘ 1025,
' ’ ' ‘ : DOL1 | | 7004826257,
20 072 1.83 15722 8.58 ‘1 0167X53 2‘
1+0.1282X55°
2,1 091 1.34 6.8599 3.90 ‘1 + 0.0646X118 ‘ DO ‘
DOL2| | 143973
31 079 1.00 0.0000 0A0594‘w +00073x228 ( 1269000 '
I DOL3| 14319008

total number of parameters allowed to vary was sixty seven, but only fifty parameters
were used. The minimization of VAR in Equation 12 produced the forty nine parameters
for paclitaxel in Table 7 and the last parameter is the volume of distribution for pacli-
taxel, which was found to be Vpprx = 3.53 L/m?. The minimum weighted percentage
variance was found to be VAR = 0.035. The weighted variance was determined to be
S = 0.18 micromoles squared per liter squared. The results are shown in Figures 9 and
10. The experimental data in Figure 9 is from Gianni et al. [32]. The experimental data
in Figure 10 is from Ohtsu et al. [33]. The comparison between the theoretical curve and
rest of the experimental data is given in Appendix B.

Paclitaxel is metabolized by the cytochrome P450 isoenzymes CYP2C8 and CYP3A4.
The primary metabolite, 6a-hydroxypaclitaxel (OHP), is formed by CYP2C8 while
3’-p-hydroxypaclitaxel and 6a,3’-p-dihydroxypaclitaxel are formed by CYP3A4. We can
also model the metabolite(s) using Equation 11. We have digitized the experimental
concentration-versus-time data and fitted the model in Equation 11 to the data. The total
number of clinical data points that were digitized from the concentration-versus-time
figures was 20. N, = 173, where N,, is defined in Equation 12. We fixed the exponents of
the drug concentration to 1 because of the lack of data, and the coefficients were allowed
to vary. There are twenty six coefficents, so those that had the least influence were set to
zero. The minimization of VAR in Equation 12 produced the fifteen parameters for 6c-
hydroxypaclitaxel in Table 8 and another three parameters in Equation 17. Equation 17 is
the rate at which paclitaxel is being converted into 6« -hydroxypaclitaxel:

2.09
1-0.0023X2%,

1.03
lonpa = 2.98Xpry o L+ 0.0876XL%
. PTX,2

(17)

5 0.215X0oHP,2
1+ 0.640X0omHp2

Table 5 The PK parameters for Equation 11 modeling doxorubicin for Moreira et al. [28]

jik Apox,jk Bpox .k Tpox,jk Kpox, j k
1-002313 %
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Table 6 The PK parameters for Equation 11 modeling doxorubicinol for Moreira et al. [28]

jk ApoLjk Bpor,jk TpoLjk Kpor, j k
4OXDOLZ
12 157 2,51 0.3261 159 W
0.711x1.22
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DOL1
110 || 1=787X580
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The coefficient 37.5 in Equation 17 represents the fraction of eliminated paclitaxel
being converted into 6c-hydroxypaclitaxel times the volume of distribution for paclitaxel
divided by the volume of distribution for 6«-hydroxypaclitaxel. The weighted percentage
variance for 6«-hydroxypaclitaxel was calculated to be VAR = 0.043 and the weighted
variance was determined to be S = 0.043 micromoles squared per liter squared without
the paclitaxel. The combined weighted percentage variance for paclitaxel and its metabo-
lite is VAR = 0.036. The combined weighted variance is S = 0.16 micromoles squared
per liter squared for paclitaxel and its metabolite.

These models describe the pharmacokinetic effects of the drugs when there is no inter-
action between the drugs. The clinical data shows that they do influence each other’s
metabolism. We intend to find out what the nature of their molecular interactions with
the key metabolic enzyme are. In particular, we have hypothesized that both of the drugs
compete for the same liver enzyme and the metabolic action of this enzyme, CYP3A4, can
be saturated by one type of the drug molecules leaving the other unmetabolized. The drug
with a higher binding free energy would have a greater probability of being metabolized.
This is discussed in some detail below based on atomic level MD simulations.

The pharmacodynamic interaction of Doxorubicin and Paclitaxel with CYP3A4
The blind-docking simulations showed that both paclitaxel and doxorubicin bind to the
surface of CYP3A4. Although the metabolic activity of CYP3A4 requires the binding of
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Figure 7 Comparison of our theoretical results with the experimental results of Gianni et al. [27] for
doxorubicin and doxorubicinol. The concentration-versus-time data for doxorubicin is represented by the
squares and the doxorubicinol data is represented by the triangles. The data is from Gianni et al. [27], with the
curve from Equation 11 using the parameters in Tables 3 and 4.
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Figure 8 Comparison of theoretical and the experimental results of Moreira et al. [28] for doxorubicin
and doxorubicinol. The concentration-versus-time data for doxorubicin is represented by the squares and
the doxorubicinol data is represented by the triangles. The data is from Moreira et al. [28], with the curve from
Equation 11 using the parameters in Tables 5 and 6.

the substrate within the active site, the binding of the ligand should occur first on the sur-
face of the enzyme. This initial binding would provide an entry point of the substrate to
the active site. Based on this assumption, we investigated all possible binding locations
for both doxorubicin and paclitaxel on the surface of CYP3A4. A blind docking analysis
confirmed the binding of both compounds to CYP3A4. Figure 11 shows the binding loca-
tions of paclitaxel and doxorubicin on the surface of CYP3A4. The atoms of the protein
are colored using the minimal value of their binding energy to the docked ligands. This
procedure allowed us to identify and rank the most probable binding locations of the two
drugs. The binding energies for paclitaxel ranged from —11 kcal/mol to —5 kcal/mol. On
the other hand, doxorubicin bound to the surface of CYP3A4 with binding energies rang-
ing from —8 kcal/mol to —4 kcal/mol. This analysis marked the possible entry points of
the two ligands to the CYP3A4 active site. It is also worth mentioning that although the
adopted blind docking procedure required considerable number of docking calculations,
it has two advantages compared to covering the whole protein with a single docking box.
First, the spacing between grid points used by AUTOGRID can be as accurate as a normal
docking simulation. Second, there is no need to increase the number of energy evolu-
tions or the population size to proportionally high values. This blind docking protocol

Table 7 The PK parameters for Equation 11 modeling paclitaxel
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Figure 9 Comparison of theoretical curve and the experimental results of Gianni et al. [32] for
paclitaxel. The concentration-versus-time data for paclitaxel is represented by the circles. The data is from

Gianni et al. [32]. The curves are calculated using Equation 11 using the parameters in Table 7.

was used earlier to successfully identify the binding location of laulimalide, a microtubule
stabilizing agent, on the surface of tubulin [26].

Figure 12 illustrates the binding modes of both paclitaxel and doxorubicin within the
CYP3A4 active site. The protein possesses a relatively large substrate-binding cavity that
accommodates the bulky paclitaxel substrate. The two compounds exhibited strong bind-
ing to the active site, although paclitaxel showed higher binding affinity. The binding
energies of paclitaxel and doxorubicin were —12 kcal/mol and —10 kcal/mol, respec-
tively. In the docked structures, paclitaxel was closer to the HEM group than doxorubicin.
The two ligands formed hydrogen bonds with protein residues. For example, paclitaxel
was hydrogen-bonded to residues I1le120, Leu211 and Arg372. Doxorubicin was attached
to Phel08, I1e300 and Ala305. The large space available for both the ligands and protein
residues allows for huge conformational changes that would accommodate the bound
substrate. This correlates with similar available crystal structures of CYP3A4 bound to
two distinct families of compounds [34].

Based on the above simulations, it appears that both paclitaxel and doxorubicin strongly
bind to the same metabolic enzyme, CYP3A4. Their binding locations are distinct, but
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Figure 10 Comparison of theoretical curve and the experimental results of Ohtsu et al. [33] for

paclitaxel. The concentration-versus-time data for paclitaxel is represented by the circles. The data is from
Ohtsu et al. [33]. The curves were calculated using Equation 11 using the parameters in Table 7.
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Table 8 The PK parameters for Equation 11 modeling 6«-hydroxypaclitaxel
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31 1 1 0.0000 0.0468 |1 + 0.0975Xonp 3| ‘ e

conformational changes associated with the binding process may result in their compet-
itive inhibition of each other. Furthermore, paclitaxel is predicted to bind significantly
more strongly to CYP3A4 than doxorubicin giving a greater probability of being metab-
olized when administered simultaneously with doxorubicin. It is, therefore, reasonable to
recommend the administration of doxorubicin after paclitaxel. This is further analyzed
and quantified below.

The pharmacokinetic interaction between Doxorubicin and Paclitaxel

The metabolite, doxorubicinol, is produced from doxorubicin by the cytochrome P450
isoenzyme CYP3A4, while paclitaxel’s metabolites are produced by the cytochrome
P450 isoenzymes CYP2C8 and CYP3A4. Paclitaxel’s primary metabolite is produced
by CYP2C8 and hence doxorubicin is not expected to have a noticeable effect on the
metabolism of paclitaxel. This is verified as illustrated in Figure 13. The three experimen-
tal studies shown in Figure 13 involve giving the patients 60 mg/m? of doxorubicin over
five minutes and then waiting for a period of time before giving the patients 200 mg/m?> of
paclitaxel over a three-hour interval. The time for each set of paclitaxel data in Figure 13
was shifted so the time starts when the paclitaxel begins to be given to the patients. The
green data corresponds to the administration of paclitaxel starting fifteen minutes after
doxorubicin [27]. The black data corresponds to the administration of paclitaxel starting
thirty minutes after doxorubicin [28]. The blue data corresponds to the administration of
paclitaxel starting twenty four hours after doxorubicin [28]. The fact that the paclitaxel
curves in Figure 13 do not change as a function of the time interval between the doxoru-
bicin and paclitaxel administrations exemplifies that doxorubicin has no apparent effect

Figure 11 Blind docking of paclitaxel and doxorubicin to CYP3A4. The blind docking illustration of
paclitaxel (A) and doxorubicin (B) to CYP3A4. The red areas are the favorable binding regions and the blue
areas are less favorable.
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Figure 12 Binding of paclitaxel and doxorubicin within CYP3A4. The binding modes of paclitaxel
(A) and doxorubicin (B) within the active site of CYP3A4.

upon the paclitaxel. The concentration-versus-time in Figure 13 also shows the theoreti-
cal curve. The theoretical curve is from Equation 11 using the parameters in Table 7 with
no doxorubicin present. The three sets of clinical data and the theoretical curve agree
remarkably well, which supports the assumption that doxorubicin has no influence on the
paclitaxel.

In contrast, we expect the presence of paclitaxel to have a strong influence on the
metabolism of doxorubicin. As predicted in the previous subsection, paclitaxel will bind
to CYP3A4 more strongly than doxorubicin and if the two drugs are simultaneously
present, we expect paclitaxel to replace doxorubicin that is bound to CYP3A4. The dox-
orubicin and doxorubicinol parameters given in Tables 3 and 4 are for the best fit to
the data from Gianni et al. [27], and the doxorubicin and doxorubicinol parameters in
Tables 5 and 6 are for the best fit to the data from Moreira et al. [28]. The influence of
paclitaxel on doxorubicin can be included in the model given in Equation 11 by modify-
ing the rate coefficients, Kj ;x given in these tables. The theoretical curve was fitted to the
data by minimizing VAR in Equation 12. The number of data points in the Gianni et al.
[27] study during the interaction of the drugs is 46 for doxorubicin (N, = 568) and 48
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Figure 13 The administration of paclitaxel after doxorubicin. The concentration-versus-time curve for

200 mg/m? of paclitaxel given over a three-hour interval after the patient has recieved doxorubicin. The
details about the data and the curve can be found in the discussion of the figure.
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for doxorubicinol (N, = 494). The weighted percentage variance is VAR = 0.069 and the
weighted variance is S = 1.6 micromoles squared per liter squared for doxorubicin. The
weighted percentage variance is VAR = 0.063 and the weighted variance is S = 0.00010
micromoles squared per liter squared for doxorubicinol. The combined weighted per-
centage variance for all the drugs (145 data values and N, = 1670) is VAR = 0.068 and
the combined weighted variance is S = 1.1 micromoles squared per liter squared.

The total number of parameters used to minimize VAR was 10 for doxorubicin and 39
for doxorubicinol. These parameters are shown in Equation 18, and Tables 9 (doxoru-
bicin) and 10 (doxorubicinol) for Gianni et al. [27]. In Table 10, the row 1,2 has a term
with 0.00008 and the row 3,1 has a term with 0.00003. These eight parameters can be
ignored without much lost of information. In addition, the rate at which doxorubicin is
being converted into doxorubicinol was found to be

117
0.358X55, 5 ]
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IpoLa = 0.264X553% [2.49 -
DOL,2

0.314.X 0.00611X,
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1+ 0.0119Xp7x2 14 0.00002X 37

According to these parameters, the presence of the paclitaxel slows down the rate of
elimination of the doxorubicin and doxorubicinol from the body. The paclitaxel also
increases the kinetic rate at which doxoruciinol is moved from compartment 2 (elimina-
tion organs) to compartment 1 (blood/plasma) and reduces the kinetic rate for the reverse
flow. The theoretical fit is shown in Figure 14.

The doxorubicin and doxorubicinol parameters given in Tables 5 and 6 are for the best
fit to the data from Moreira et al. [28]. The influence of paclitaxel on doxorubicin and
doxorubicinol can be included in the model given in Equation 11 by modifying the rate
coefficients, Kj; given in these tables. The theoretical curve was fitted to the data by
minimizing VAR in Equation 12. The number of data points in the Moreira et al. [28]
study during the interaction of the drugs is 14 for doxorubicin (N, = 392) and 16 for
doxorubicinol (N, = 448). The weighted percentage variance is VAR = 0.0028 and the
weighted variance is § = 1.2 x 10~> micromoles squared per liter squared for doxoru-
bicin. The weighted percentage variance is VAR = 0.028 and the weighted variance is

Table 9 The PK parameters for Equation 11 modeling doxorubicin for Gianni et al. [27] with
paclitaxel present
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Table 10 The PK parameters for Equation 11 modeling doxorubicinol for Gianni et al. [27]
with paclitaxel present
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Figure 14 Comparison of our theoretical results with the experimental results of Gianni et al. [27] for
doxorubicin and doxorubicinol in the presence of paclitaxel. The squares represent the doxorubicin
data, the triangles represent the doxorubicinol data, the circles represent the paclitaxel data, and the stars
represent the 6a-hydroxypaclitaxel data. The concentration-versus-time results for different situations are
shown in parts (A) and (B) of the figure, with the black curves being our theoretical predictions. 60 mg/m?
doxorubicin was given as a 0.083-hour bolus injection, followed by: (A) a 0.25-hour interval before 200 mg/m?
paclitaxel was infused over 3 hours. The green and blue data corresponds to two different sets of patients
[27]. (B) a 24-hour interval before 150 mg/m2 paclitaxel was infused over 3 hours [27].
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S = 0.00019 micromoles squared per liter squared for doxorubicinol. The combined
weighted percentage variance for all the drugs (69 data values and N, = 1932) is
VAR = 0.042 and the combined weighted variance is S = 0.082 micromoles squared per
liter squared.

The total number of parameters used to minimize VAR was 10 for doxorubicin and 24
for doxorubicinol. These parameters are given in Tables 11 (doxorubicin) and 12 (doxoru-
bicinol) for Moreira et al. [28]. The rate of conversion of doxorubicin into doxorubicinol

was found to be:

0.344X 187
I = 0.264X:38 3984 —— DOL2
DOL,2 DOX,2 1 + 9.03X1'46

DOL,2
0.498Xprx 0.800X128
— + 589 (19)
1+ 0.101Xprx,2 1 +0.00007Xp7y,»

None of the parameters are insignificant. According to these parameters, the presence
of the paclitaxel slows down the rate of elimination of the doxorubicin and doxorubi-
cinol from the body. The paclitaxel repels the doxorubicin and doxorubicinol from the
compartment. The paclitaxel in comparment 1 increases the rate of flow of doxorubicin
and doxorubicinol into compartment 2 from 1 and slows down the flow from compart-
ment 2 into 1. Similarly, the paclitaxel in comparment 2 increases the rate of flow of
doxorubicin and doxorubicinol into compartment 1 from 2 and slows down the flow from
compartment 1 into 2. The results for Moreira et al. [28] are shown in Figure 15.

The presence of paclitaxel within a compartment causes an increase in the rate at which
doxorubicin flows from the compartment to the other compartment(s). In addition, the
presence of paclitaxel slows the rate that doxorubicin is being eliminated from the body.
The paclitaxel also causes the flow rate of the doxorubicinol to increase. The expulsion of
the doxorubicin and doxorubicinol into the blood/plasma compartment is in agreement
with what is observed experimentally with the spikes in the concentration-versus-time
curves.

The amount of metabolite doxorubicinol being produced is also strongly affected
by the presence of paclitaxel. We see from the expression for Ipor» that the fraction
being metabolized into doxorubicinol is increased by the presence of paclitaxel; but the

Table 11 The PK parameters for Equation 11 modeling doxorubicin for Moreira et al. [28]
with paclitaxel present
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Table 12 The PK parameters for Equation 11 modeling doxorubicinol for Moreira et al. [28]

with paclitaxel present
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Figure 15 Comparison of theoretical and the experimental results of Moreira et al. [28] for doxorubicin
and doxorubicinol in the presence of paclitaxel. The squares represent the doxorubicin data, the triangles
represent the doxorubicinol data, and the circles represent the paclitaxel data. The concentration-versus-time
results for different situations are shown in parts (A) and (B) of the figure with the black curves being our
theoretical predictions. 60 mg/m? doxorubicin was given as a 0.083-hour bolus injection followed by:
(A) 0.5-hour interval before 200 mg/m? paclitaxel was infused over 3 hours. (B) 24-hour interval before
200 mg/m? paclitaxel was infused over 3 hours [28].
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amount of doxorubicin in compartment 2 available to be converted into doxorubicinol
is reduced as well as the amount being eliminated. Doxorubicinol is a highly cardiotoxic
metabolite and the reduction of its production will reduce the chances of serious side
effects [35].

The parameters in Tables 9 and 10 compared to Tables 11 and 12 are similar with
a few differences. These differences do not change the overall qualitative behavior and
produces similar results. For example, if doxorubicin is present and then paclitaxel is
introduced to the body then both predict that the flow rate of doxorubicin into the
elimination organs compartment will increase. Once the paclitaxel concentration in the
elimination organ has increased to a sufficient level then the flow rate out into the blood
plasma has increased more than the flow rate into the organ, which causes a spike in the
concentration levels seen in the experimental data.

Our findings correlate well with the experimental data and provide computational and
conceptual support for a possible binding of the two drugs to CYP3A4. The question that
still remains is: what is the optimal time delay in the sequence of administration of the
drugs? To answer this question, we calculate the AUC, which is defined as;

)
AUC;; = / Xijdt. (20)
—00

To investigate the time sequence we use the dosage introduced by Gianni et al. [27]
and Moreira et al. [28]. In other words, 60 mg/m? of doxorubicin is administered in a
five-minute IV bolus and 150 mg/m? or 200 mg/m? of paclitaxel in a three-hour IV. The
AUC is integrated over the period of infusion plus a one-week interval after the infusion
has stopped instead of calculating the integral over all time. The portion of the curve
neglected after a week has a very small contribution to the AUC, which does not change
the results significantly.

The AUC for doxorubicin and doxorubicinol was calculated for the blood plasma com-
partment (1). In the case when doxorubicin is given first and paclitaxel is administered
to the patient afterwards, the AUC of the doxorubicin is larger the closer in time the two
are administered at. Unfortunately, the AUC of doxorubicinol is also very large the closer
the two drugs are administered to each other reaching a maximum when both started at
the same time. Therefore, we expect the toxicity of doxorubicin and doxorubicinol to be
enhanced with this drug sequence. In the case when the order is switched and paclitaxel
is given first there are two different situations. The first situation is when the doxorubicin
is given during the first three hours while the paclitaxel is being administered. The AUC
of the doxorubicin is a maximum during this interval. If the doxorubicin is given after the
third hour the AUC becomes smaller the larger the interval between when the paclitaxel
finishes and the doxorubicin is given. The AUC of the doxorubicinol is reduced by having
the doxorubicin given after the paclitaxel. This reduces the toxicity of doxorubicinol while
maximizing the effects of doxorubicin. Therefore, we maximize the effects of the combi-
nation if paclitaxel is given over three hours followed by doxorubicin given between 1 to
4 hours after the paclitaxel is started.

We conclude that doxorubicin should be administered optimally within four hours after
the paclitaxel infusion is complete. These results suggest that the efficacy of doxorubicin
can be increased by giving the patient paclitaxel prior to infusion of doxorubicin.



Vos et al. EPJ Nonlinear Biomedical Physics 2014, 2:13 Page 25 of 40
http://www.epjnonlinearbiomedphys.com/content/2/1/13

Conclusions

One of the major challenges in dose optimization is nonlinear behavior in one or
more drug processes. In the current study, we investigated new ways to assess and
quantify nonlinear pharmacokinetic behavior, with emphasis on their origins and ther-
apeutic applications of the drug combination involving paclitaxel and doxorubicin.
We have justified the development of a saturable compartment model with compet-
ing interactions between the two drugs by demonstrating through molecular dynamics
simulations that they compete for the same metabolic enzyme with different binding
affinities.

Molecular pathways are complex and the correlation of these pathways with malignancy
is still an open issue, a complication that has led to systems biology approaches to cancer
research [36]. While the system biology approach is promising, we focused on a well-
understood and time-tested approach involving pharmacokinetic equations for a multi-
compartment model leaving a more complex issue of multiple molecular pathways for
future development.

Since no single drug is sufficiently efficacious to become a “silver bullet” cure for
large patient populations, combinations of drugs addressing different molecular path-
ways appear to be capable of increasing patient survival. Optimization of combinations
in terms of their sequences, schedules and dosages is a daunting task and needs a formal
mathematical development. In the present paper we focused on a specific combina-
tion of two drugs and made the following two assumptions. First, saturation kinetics
is in principle allowed in all compartments. Second, drug interactions are included to
the extent of affecting kinetic rates of other drugs; specifically some drugs may either
enhance or inhibit the transition kinetics of others depending on the built-in parameter
values.

We have developed a relatively simple but robust four-compartment saturable kinetics
model that has been shown to reproduce a number of empirical data sets very well. This
is of practical importance in view of the toxic effects these drugs have on patients. In par-
ticular, it has been reported that doxorubicin is strongly cardio-toxic and doxorubicinol
is ten times more cardio-toxic than doxorubicin [37]. Therefore, by keeping doxorubicin
from being metabolized by liver enzymes, the drug will be more effective at killing the
tumor as well as being less toxic to the body. This suggests that the optimal sequence is to
give paclitaxel first and then almost immediately afterwards, give a dose of doxorubicin
to the patient.

Appendix A: Doxorubicin experimental data

Equation 11 is the basis of our pharmacokinetic model and was fitted to several data sets
that were digitized from concentration-versus-time curves. Some of the data represent
mean values obtained from multiple patient sets, some of the data come from a represen-
tative patient out of a group, and some of the data describe a single patient. Due to this
diversity of origin comparing different data sets is fraught with problems. However, our
intention was to demonstrate the robustness of our model in fitting the data. In total, we
have digitized 463 data points for doxorubicin. Multiplying the data points that represent
mean values by the number of patients gave 1341 patient-data points. Similarly, for the
metabolite doxorubicinol, we obtained 126 data points, which become 869 patient-data
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Figure 16 Doxorubicin and doxorubicinol from Andersen et al. Log-L.og plot of doxorubicin and doxorubicinol.
The doxorubicin data (squares) and the doxorubicinol data (triangles) are from Andersen et al. [30].

points when multiplied by the number of patients. The figures below show the individual
data sets and our best fit.

The first set of data is from Andersen et al. [30]. This study involved 24 patients, each
receiving 50 mg/m? of doxorubicin in a 10-minute IV infusion. Figure 16 is a log-log plot
of their doxorubicin and doxorubicinol data compared with the theoretical curve using
Equation 11 with the parameter values given in Tables 1 and 2.

The second data set is from Greene et al. [31]. This study involved 10 patients, each
receiving 75 mg/m? of doxorubicin in a 15-minute IV infusion. Figure 17 is a log-log plot
of their doxorubicin and doxorubicinol data compared with the theoretical curve using
Equation 11 with the parameter values given in Tables 1 and 2.

The third data set is from Benjamin et al. [29]. This paper covered two separate studies.
The first study involved 16 patients, each receiving 60 mg/m? of doxorubicin ina 1 to 5
minute IV infusion. The second study involved 13 patients, each receiving 60 mg/m? of
doxorubicin in a 2 to 10 minute IV infusion. However, in the second study, doxorubicin
and doxorubicinol was extracted from the plasma using chloroform: isopropyl alcohol
(1:1, v/v). Figure 18 is alog-log plot of their doxorubicin and doxorubicinol data compared
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Figure 17 Doxorubicin and doxorubicinol from Greene et al. Log-Log plot of doxorubicin and doxorubicinol.
The doxorubicin data (squares) and the doxorubicinol data (triangles) are from Greene et al. [31].
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Figure 18 Doxorubicin and doxorubicinol from Benjamin et al. Log-Log plot of doxorubicin and
doxorubicinol. The doxorubicin data (squares) and the doxorubicinol data (triangles) are from Benjamin et al. [29].

with the theoretical curve using Equation 11 with the parameter values given in Tables 1
and 2. The pink data correspond to the chloroform data and the purple was from the
acid:alcohol extraction study.

The fourth data set is from Gianni et al. [27]. This study focused mainly on the
interaction of doxorubicin with paclitaxel, but one of the published concentration-versus-
time curves was for doxorubicin without any paclitaxel for the first 24 hours. This data
involved 8 patients, each receiving 60 mg/m?* of doxorubicin in a 5-minute IV infu-
sion. Figure 19 is a log-log plot of their doxorubicin and doxorubicinol data compared
with the theoretical curve using Equation 11 with the parameter values given in the
text.

The fifth data set is from Moreira et al. [28]. This study focused mainly on the interac-
tion of doxorubicin with paclitaxel, but one of the published concentration-versus-time
curves was for doxorubicin without any paclitaxel for the first 24 hours. This data
involved 28 patients, each receiving 60 mg/m? of doxorubicin in a 5-minute IV infu-
sion. Figure 20 is a log-log plot of their doxorubicin and doxorubicinol data compared
with the theoretical curve using Equation 11 with the parameter values given in Tables 1
and 2.
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Figure 19 Doxorubicin and doxorubicinol from Gianni et al. Log-Log plot of doxorubicin and
doxorubicinol. The doxorubicin data (squares) and the doxorubicinol data (triangles) are from Gianni et al. [27].
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Figure 20 Doxorubicin and doxorubicinol from Moreira et al. Log-Log plot of doxorubicin and
doxorubicinol. The doxorubicin data (squares) and the doxorubicinol data (triangles) are from Moreira et al. [28].

The sixth data set is from Di Fronzo et al. [38]. This study involved six patients, each
receiving 0.5 mg/kg of doxorubicin. Figure 21 is a plot of their doxorubicin data compared
with the theoretical curve using Equation 11 with the parameter values given in Tables 1
and 2.

The seventh, eighth, ninth, tenth and eleventh data sets are from Jacquet et al. [39].
This study involved 18 patients, each receiving 25 to 75 mg/m?* of doxorubicin in 5 to
15 minute IV infusion. The seventh study involved one patient and shows two courses
of doxorubicin, each having a dose of 51.37 mg/m? of doxorubicin in a 10-minute IV
infusion. Figure 22 is a log-log plot of their doxorubicin data compared with the theo-
retical curve using Equation 11 with the parameter values given in Tables 1 and 2. The
eighth study involves the same patient as the one in the seventh study and shows four
courses of doxorubicin, each having a dose of 51.37 mg/ m? of doxorubicin in a 25-minute
IV infusion, shown in Figure 23. The ninth study involves a single patient and shows
four courses of doxorubicin, each having a dose of 51.12 mg/m? of doxorubicin in a
15-minute IV infusion, which is illustrated in Figure 24. Figure 25 shows the tenth study,
which involves the same patient as the ninth study and shows three courses of doxoru-
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Figure 21 Doxorubicin and doxorubicinol from Di Fronzo et al. Plot of doxorubicin data from Di Fronzo
et al. compared to the theoretical curve [38].
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Figure 22 10-minute IV of 51.37 mg/m? Doxorubicin. The squares represent the doxorubicin data from
Jacquet et al. for 51.37 mg/m? of doxorubicin during a 10-minute IV infusion [39].

bicin, each having a dose of 51.12 mg/m? of doxorubicin in a 10-minute IV infusion. The
eleventh study involves a patient who received three courses of doxorubicin, each hav-
ing a dose of 45.9 mg/m? of doxorubicin in a 15-minute IV infusion, which is shown in
Figure 26.

The twelfth data set is from Bressole et al. [40]. This study involved a single patient
receiving 80 mg of doxorubicin during each course. We assumed that the body surface
area was 1.6m? and the infusion was over one hour. Figure 27 is a log-log plot of their
doxorubicin data compared with the theoretical curve.

The thirteenth data set is from Eksborg et al. [41]. Figure 28 is a log-log plot of their dox-
orubicin data compared with the theoretical curves using Equation 11 with the parameter
values given in Tables 1 and 2. All the data are for individual patients. The blue data
are for a dose of 33.8 mg/m? in a 45-minute IV infusion. The pink data are for a dose
of 49.3 mg/m? in a 2-hour IV infusion. The red data are for a dose of 49.3 mg/m? in a
4-hour IV infusion. The green data are for a dose of 30 mg/m? in an 8-hour IV infusion.
We assumed a 7.5-hour infusion for the theoretical curve. The black data are for a dose of
30 mg/m? in a 16-hour IV infusion.
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Figure 23 25-minute IV of 51.37 mg/m? Doxorubicin. The squares represent the doxorubicin data from
Jacquet et al. for 51.37 mg/m? of doxorubicin during a 25-minute IV infusion [39].
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Figure 24 15-minute IV of 51.12 mg/m? Doxorubicin. The squares represent the doxorubicin data from
Jacquet et al. for 51.12 mg/m? of doxorubicin during a 15-minute IV infusion [39].
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Figure 25 10-minute IV of 51.12 mg/m? Doxorubicin. The squares represent the doxorubicin data from
Jacquet et al. for 51.12 mg/m? of doxorubicin during a 10-minute IV infusion [39].
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Figure 26 15-minute IV or 45.9 mg/m? Doxorubicinol. The triangles represent the doxorubicinol data
from Jacquet et al. for 45.9 mg/m? of doxorubicin during a 15-minute IV infusion [39].
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Figure 27 Doxorubicin from Bressole et al. The squares are the doxorubicin data from the Bressole et al.
study [40]. The orange data is the third course and the red data is the sixth course.
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Figure 28 Doxorubicin from Eksborg et al. The doxorubicin data represented by the squares is from
Eksborg et al. [41].
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Figure 29 Doxorubicin and doxorubicinol from Chan et al. A dosage of 45 mg/m? of doxorubicin was

administered to patients. The doxorubicin data represented by the squares and the doxorubicinol data
represented by the triangles are from Chan et al. [42].
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Figure 30 Doxorubicin from Chan et al. A dosage of 40 mg/m? of doxorubicin was administered to
patients. The doxorubicin data represented by the squares and the doxorubicinol data represented by the
triangles are from Chan et al. [42].
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Figure 31 Doxorubicin and doxorubicinol from Chan et al. A dosage of 30 mg/m? of doxorubicin was

administered to patients. The doxorubicin data represented by the squares and the doxorubicinol data
represented by the triangles are from Chan et al. [42].
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Figure 32 Doxorubicin and doxorubicinol from Chan et al. A dosage of 15 mg/m? of doxorubicin was
administered to patients. The doxorubicin data represented by the squares and the doxorubicinol data
represented by the triangles are from Chan et al. [42].
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Figure 33 Doxorubicin and doxorubicinol from Chan et al. A dosage of 10 mg/m? of doxorubicin was

administered to patients. The doxorubicin data represented by the squares and the doxorubicinol data
represented by the triangles are from Chan et al. [42].

The fourteenth, fifteenth, sixteenth, seventeenth and eighteenth data sets are from
Chan et al. [42]. All the theoretical curves are obtained from Equation 11 with the
parameter values given in Tables 1 and 2. The fourteenth study shown in Figure 29
shows doxorubicin and doxorubicinol data for five patients, each receiving 45 mg/m? of
doxorubicin in a bolus IV. The fifteenth study shown in Figure 30 shows several courses
given to a single patient, receiving 40 mg/m? of doxorubicin in a bolus IV. Figure 31
shows four patients data, each receiving 30 mg/m? of doxorubicin in a bolus IV. The
gray data represents a few courses. Figure 32 shows data for four patients, each receiv-
ing 15 mg/m? of doxorubicin in a bolus IV. Two courses of doxorubicin are shown for
one of the patients. Figure 33 shows a patient receiving 10 mg/m? of doxorubicin in a
bolus IV.

Appendix B: Paclitaxel experimental data

Equation 11 is the basis of our pharmacokinetic model and was fitted to several sets of
paclitaxel data that were digitized from figures representing experimental concentration-
versus-time curves. Some of the data represents mean values obtained from multiple
patients, some of the data came from a representative patient out of a group, and
some of the data describe a single patient. Due to this diversity of origin, we weighted
each data set based on the number of patients it represented. We did not attempt
to fit to a single set of data, but used all the data; our intention was to demonstrate
the robustness of our model in fitting the data. In total, we have digitized 352 data
points for paclitaxel. If we multiply the data points that represent mean values by the
number of patients then we have 1104 patient-data points. Similarly, for the metabo-
lite 6c-hydroxylpaclitaxel, we obtained 20 data points, which is still 20 patient-data
points when multiplied by the number of patients. The lack of data for the metabo-
lite means we can use only 19 parameters and the fit is not as robust as it could
have been with more experimental data. The figures below show the individual data
sets and our best fits using Equation 11 with the parameter values given in Tables 7
and 8.
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Figure 34 Paclitaxel and 6a-hydroxylpaclitaxel from Gianni et al. The paclitaxel data represented by the
circles and the 6a-hydroxylpaclitaxel data represented by the diamonds are from Gianni et al. [32].

The first data set for paclitaxel is from Gianni et al. [32]. This study involved 30
patients; four patients received 135 mg/m2 during a three-hour IV infusion, three
patients received 175 mg/m? during a three-hour IV infusion, 15 patients received
225 mg/m? during a three-hour IV infusion, four patients received 135 mg/m? dur-
ing a twenty four-hour IV infusion and 4 patients received 175 mg/m? during a
twenty four-hour IV infusion. Figure 34 is for a single representative patient for each
dosage.

The second data set is from Monsarrat et al. [43]. This study involved a female patient
receiving 135 mg/m? during a three-hour IV infusion shown in Figure 35.

The third data set is from Mross et al. [44]. This study involved thirty patients; six
patients received 150 mg/m? during an one-hour IV infusion, six patients received
175 mg/m? during an one-hour IV infusion, six patients received 200 mg/m?* during an
one-hour IV infusion, six patients receiving 225 mg/m? during an one-hour IV infu-
sion and six patients receiving 250 mg/m? during an one-hour IV infusion shown in
Figure 36. The experimental data represent the median value of the concentrations of the
six patients.
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Figure 35 Paclitaxel and 6a-hydroxylpaclitaxel from Monsarrat et al. The paclitaxel data represented
by the circles and the 6a-hydroxylpaclitaxel data represented by the diamonds are from Monsarrat et al. [43].
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Figure 36 Paclitaxel from Mross et al. The paclitaxel data represented by the circles is from Mross et al. [44].

The fourth data set is from Brown et al. [45]. This study involved eighteen patients;
seven patients receiving 175 mg/m? during a six-hour IV infusion, six patients receiv-
ing 250 mg/m? during a six-hour IV infusion, and five patients receiving 275 mg/m?>
during a six-hour IV infusion, which is shown in Figure 37. Each set of experi-
mental data in the figure corresponds to a single representative patient from the
cohort.

The fifth data set is from Ohtsu et al. [33]. This study involved twenty two
patients; three patients receiving 105 mg/m? during a three-hour IV infusion, three
patients receiving 180 mg/m? during a three-hour IV infusion, seven patients receiving
240 mg/m?* during a three-hour IV infusion, three patients receiving 105 mg/m? dur-
ing a twenty four-hour IV infusion and six patients receiving 180 mg/m? during
a twenty four-hour IV infusion. The results are shown in Figure 38. The exper-
imental data represent the mean values of the concentrations measured in the
patients.

The sixth data set is from Longnecker et al. [46]. This study involved eight patients;
two patients receiving 60 mg/m? during an one-hour IV infusion, three patients receiving
170 mg/m? during a six-hour IV infusion, and three patients receiving 265 mg/m? during
a six-hour IV infusion, which is shown in Figure 39. The experimental data represent
individual patients from the study.
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Figure 37 Paclitaxel from Brown et al. The paclitaxel data represented by the circles is from Brown et al. [45].
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Figure 38 Paclitaxel from Ohtsu et al. The paclitaxel data represented by the circles is from Ohtsu et al. [33].

The seventh data set in Figure 40 is from Gelmon et al. [47]. This study involved five
patients receiving 250 mg/m? during a three-hour IV infusion. The experimental data
represents a single patient out of the five patients in the study.

The eighth data set shown in Figure 41 is from Wiernik et al. [48]. This study involved
twelve patients; four patients receiving 175 mg/m? during a six-hour IV infusion, two
patients receiving 200 mg/m? during a six-hour IV infusion, three patients receiving
230 mg/m?* during a six-hour IV infusion and three patients receiving 275 mg/m>
during a six-hour IV infusion. The experimental data represent the mean values of the
concentrations.

The ninth data set from Maier-Lenz et al. [49] is shown in Figure 42. This study
involved thirty patients; four patients receiving 150 mg/m? during an one-hour IV
infusion, four patients receiving 175 mg/m? during an one-hour IV infusion, thirteen
patients receiving 200 mg/m? during an one-hour IV infusion, eight patients receiving
225 mg/m? during an one-hour IV infusion and three patients receiving 250 mg/m? dur-
ing an one-hour IV infusion. The experimental data represent the mean values of the
concentrations.
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Figure 39 Paclitaxel from Longnecker et al. The paclitaxel data represented by the circles is from
Longnecker et al. [46].
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Figure 40 Paclitaxel from Gelmon et al. The paclitaxel data represented by the circles is from Gelmon et al. [47].
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Figure 41 Paclitaxel from Wiernik et al. The paclitaxel data represented by the circles is from Wiernik et al. [48].
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Figure 42 Paclitaxel from Maier-Lenz et al. The paclitaxel data represented by the circles is from
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