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Abstract

Background: Brain Computer Interface (BCl) is the method of transforming mental
thoughts and imagination into actions. A real-time BCl system can improve the quality
of life of patients with severe neuromuscular disorders by enabling them to
communicate with the outside world. In this paper, the implementation of a 2-class
real-time BCl system based on the event related desynchronization (ERD) of the
sensorimotor rhythms (SMR) is described.

Methods: Off-line measurements were conducted on 12 healthy test subjects with 3
different feedback systems (cross, basket and bars). From the collected
electroencephalogram (EEG) data, the optimum frequency bands for each of the
subjects were determined first through an exhaustive search on 325 bandpass filters.
The features were then extracted for the left and right hand imaginary movements
using the Common Spatial Pattern (CSP) method. Subsequently, a Bayes linear classifier
(BLC) was developed and used for signal classification. These three subject-specific
settings were preserved for the on-line experiments with the same feedback systems.

Results: Six of the 12 subjects were qualified for the on-line experiments based on
their high off-line classification accuracies (CAs > 75 %). The overall mean on-line
accuracy was found to be 80%.

Conclusions: The subject-specific settings applied on the feedback systems have
resulted in the development of a successful real-time BCl system with high accuracies.

Keywords: Brain computer interfaces (BCl); Electroencephalogram (EEG); Movement
imagery (Ml); Event-related desynchronization (ERD); Feedback systems; Bayes linear
classifier (BLC)

Background

Brain Computer Interface (BCI) - the method of transforming mental thoughts and
imagination into actions has been a very interesting and challenging research topic of
neuroscience in recent years. The primary reason for such high interest is that it helps
to improve the quality of life of patients with severe neuromuscular disorders. BCI based
systems enable such patients to communicate with the outside world even without the
output channels of peripheral nerves and muscles [1-5]. They can be used for the pur-
pose of communication (e.g. spelling device) [6, 7], interaction with external devices (e.g.
controlling a wheelchair) [8, 9], rehabilitation [10, 11] and/or for monitoring the mental
states [12, 13].
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Various types of non-invasive BCI systems have been developed using different types
of brain signals (electroencephalograms (EEGs)). Commonly used EEG signals include
the event-related P300 potentials [14—18], steady-state visual evoked potentials (SSVEPs)
[19-23], and the motor imagery (MI)-related rhythms [24—30]. In these, the P300 poten-
tials and SSVEPs are evoked by external stimuli and the MI rhythms are voluntarily
modulated by the subjects.

It has been well studied that the imagination of movements of left and right hands
results in the event-related desynchronizing (ERD) of the sensory motor rhythms (SMR)
in the contralateral sensorimotor areas and event related synchronization (ERS) on the
ipsilateral side [31, 32]. The corresponding distinguishable features in the EEG signals can
be used to design MI-based BCI systems [24—30]. Many BCI studies have reported good
offline results with high accuracies. However, a BCI-system becomes interesting when it
is able to work in real time. In this paper, a real-time MI-based BCI system was developed
in which the imagination of the movements of left and right hands were tested resulting
in a system with 2-class output [33-35].

Figure 1 illustrates the schematic of the BCI system which has been developed in
our laboratory at the Technical University of Denmark (DTU), named as the DTU-BCI
scheme from here on. Using this set-up, offline experiments were first conducted on 12
test subjects with the imaginary left/right hand movements as a calibration session to:
(i) Determine the optimal frequencies that give the best discrimination between the two
classes, (ii) Create a feature extraction filter that maximizes the distance between the two
class features, and (iii) Train a classifier for online measurements. In the online measure-
ments, first the online data are filtered with the optimal bandpass filters (obtained from
the offline analysis), then the features are extracted using the feature extraction proce-
dure from the offline analysis, and finally the feature vector is classified using the trained
classifier.
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Fig. 1 The DTU-BCl scheme
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Methods

In the DTU-BCI set-up shown in Fig. 1, 28 EEG surface electrodes placed on (and around)
the motor cortex has been used [7, 36, 37]. Furthermore, EMQG electrodes were placed
on both the arm wrists during the offline measurements to verify the passivity of the
arm muscles. Twelve healthy test-subjects (seven males and five females at an average age
of 23 + 2.6 years) took part in this study. None of them had previous history of neuro-
logical diseases or disorders that may influence the experiments. Each participant went
through an Edinburgh Handedness test [38]. The handedness test showed that six males
and all females were right handed, and only one male was left-handed. Each test-subject
was given instruction about the measurement procedures and protocols before the first
session. All subjects received remuneration for their participation.

Several studies have shown that the ERD signals can be localized at the sensorimotor
cortex [39]. However, the SMR waves in the EEG are generally weak and it is impossible
to classify the raw EEG directly [1, 40]. Therefore, EEG data were processed in order to
extract the relevant features of the SMR which are distinguishable to be used as different
control signals in a BCI set-up.

Feature extraction
We used the Common Spatial Patterns (CSP) algorithm to extract the features from the
collected EEG as it has been shown to be very efficient in extracting the features with
2-class BCI systems based on movement imagination [7, 34]. In our approach, the CSP
filter was found from the labeled offline data — a large matrix (V) of dimension N x T,
where N (= 28) is the number of channels and T is the number of samples in each channel
(depends on the window length). The data matrix contains 160 mixed trials, 80 trials of
right hand imaginary movements (r—trials) and 80 trials of left hand imagery movements
(I—trials).

Let V, and V; be the r—labeled and /—labeled trials, respectively. The corresponding
covariance matrices, X, and X;, were estimated to calculate X, the composite spatial
covariance matrix of the data.

2:c = ir + flr (1)

where the bar represents the averages. Using the eigenvector and eigenvalues of X, we
transformed the data into the eigenvector space:

Y, =BV, and Y, =BV, )
_1
The next step was the whitening-transformation of the data. Using, W = A, 2BCT , both
%, and X; were whitened as:
S, =Wz, Wl and S;=wWxz,wW’. (3)

Note that both S, and S; share the same eigenvectors [41], and hence they can be
expressed as:

S, =BABT and S;=BABT where A+ ;=L (4)

The fact that A, +1; = Ileads to an important and beneficial condition. This implies that
the eigenvector with the largest eigenvalue in S, has the smallest eigenvalue in S;. In order
to reduce the dimension, the m (= 3 in our case) largest and m smallest eigenvalues with
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their corresponding eigenvectors were extracted and used for the data transformation.
Using W, the final CSP filter was:

Fep =B, W. (5)
The raw data matrix V was then projected onto the CSP space as follows:
Z =F.,V. (6)

Thus, the dimension was reduced from 28 x T to 2 m x T. The variances along 2m rows
in Z were calculated and normalized in order to extract the features (x).

x1
X2 7
X = . ; where x; =log % (7)
: > iy var(Zy)
X2m

Classification

The feature vector (x) extracted from the EEG data need to be classified as / or r. In this
work, the Bayes linear classifier (BLC) is used which is known to be optimal when the
attributes are independent given the class [42]. It is one of the simplest classifiers and is
based on minimizing the classification error probability [41, 43]. The classifier calculates
the conditional probabilities P(w;|x) and P(w,|x), and the class with the largest probability
given x is chosen. Assuming that both classes are Gaussian [40], and have equal covariance
matrices, i.e., X; = X, = X, we obtain:

- 0.5xlT271x1 +c> —0.5erE*1xr +c=1 (8)
—0.5X1TE_1X1 +c< —O.5erE_1xr +c=7r 9)

where x; = x — ; and x, = x — u,. If we designate D; = MZTE_IX — O.S,ulTE_lm and
Dy = uI' 27 Ix — 051 271, then it implies that,

D, >Di=r (10)
D, < D=1 (11)

In order to perform an online classification using the equations above, the covariance
matrix ¥ and the two class means y; and u, were to be known. These were calculated
from the offline data using 3 x 5-fold cross-validation. In the online BCI, no cross-
validation processes were applied. Instead, data from a sliding window was first bandpass
filtered and then CSP-filtered using parameters extracted from the offline measurements.
Features of each online data segments were classified using the BLC. Each classification
was then fed in to a voting system that gave the final classification accuracy (CA) after
e.g., 8 data segments. The following parameters were used in the voting system: segment
length range of 0.5 — 1.5 sec, the window overlapping of 90 and 95 %, and the number of
segments of 6 — 15. All test parameters were individually selected using a graphical user
interface.

Though the estimated parameters from offline analysis has been used in the online
measurements, the data from the online measurements could show considerable varia-
tion [44]. These variations may be due to non-stationeries caused by the small changes
in electrode positions, drying conductive gel or electrodes with high impedances, brain
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plasticity, especially after several sessions, or variations in the cognitive state of the user,

e.g. motivation, attention etc.

BLC
This classifier uses the standard classification rules from Egs. (10) and (11). The rules can
be expressed as:

D,—D;>0=r (12)
D,—D; <0=1 (13)

Since the data are assumed to be Gaussian distributed, the expression (D, — Dy) is also
Gaussian. To illustrate the decision criteria in BLC, Fig. 2 shows the probability den-
sity function (pdf) of (D, — D;) when performing the left and right hand movement
imagination.

The red dotted line in the figure represents the pdf of (D, — D;) when performing
imaginary left hand movements and the blue solid line represents the pdf of (D, — Dy)
when performing imaginary right hand movements. The vertical green line is the deci-
sion threshold (= 0). It is worth noting, that even though the subject-specific CSP filter
maximizes the separation between the two classes, there will always be an overlap (due
to the nature of the distribution). And because of the variations mentioned earlier, the
means of (D, — D) for left and right imaginary movements are unlikely to be equidistant
to the threshold. Therefore, this classifier may result in lower classification accuracy in
online BCIL.

Feedback systems

To ensure that the output of the online signal processing is utilized to its full, a proper
feedback paradigm should be designed. A feedback system receives the control signal
consisting of commands (left, right, no classifications), and convert them to a visualized
event on the screen. We used three different feedback systems: Cross feedback, Basket
feedback, and Bar feedback (Fig. 3).

Cross feedback
This consists of a blue cross in the middle of the screen, and two grey bars (the left goal
and the right goal), on each side of the screen (Fig. 3a). The objective is to move the

L R
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D, - D,

Fig. 2 Probability density functions of during left (red dotted curve) and right (blue solid curve) hand
imagery using NBLC. The threshold is equal to 0
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Fig. 3 Feedback systems used: a Cross, b Basket and ¢ Bars

cross to the left or the right goal, by performing imaginary left or right hand tapping,
respectively. At the beginning of each trial, one of the two goals gets red and becomes
the target goal. The cross moves one step to the side that corresponds to the online
command. In other words, if the final classification decision is left (/), the cross moves
one step to the left. If right (r), then the cross moves one step to the right. The cross
stays in the same position if the command is “no classification”. Each session consist of
ten pseudo-random trials, five left and five right. After each trial, a 5-s pause is given.
Once the cross has reached one of the goals, the system saves the selection and ends the
trial.

Basket feedback

This system consists of a blue ball at the top of the screen, and two goals at the bottom
(Fig. 3b). When the trial begins, the ball starts falling with a constant speed. The objec-
tive is to move the ball, by means of imaginary hand movements, to the target goal (the
one with red color). The ball speed can be adjusted before running the measurement.
This system also had the same trial construction as the cross paradigm. Each test-subject
went through this paradigm several times, and the ball speed has been varied for some
of the subjects. Table 4 lists the mean trial durations (MTDs) and CAs of the subjects
performing the Basket Feedback.
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Bar feedback

There is no object to move in this feedback system. The feedback consists of two bars, one
on each side of the screen. These bars are empty, and are filled gradually after each final
classification (Fig. 3c). The trial begins with an arrow appearing on the middle, instructing
the test subject, which imaginary movement to perform, i.e. which bar to fill up. If the
arrow is pointing to the right, then the test subject has to imagine right hand movement
in order to fill up the right bar, and vice versa. It takes 10 steps to fill a bar up. Once one
of the bars is filled, a selection is made. Therefore, a trial has a minimum duration of ten
steps and maximum duration of 19 successful steps. The step duration is the time between
two final classifications.

Results and discussions
The most important experiments and the results are presented in this section. The results
are based on about 100 h of measurements and many hours of measurements preparation.

Offline BCI

The preliminary offline measurements were carried out to deselect BCI illiterates and
to calculate the filters and other parameters for the test subjects [45, 46]. Each offline
calibration measurement consisted of 80 left and 80 right trials in a pseudo-random order.

ERD plots
One way of visualizing the offline data is to generate ERD plots (showing the distribution
of power) of the data from C3 and C4 electrode locations. The data from these locations
are divided into segments corresponding to left and right hand movement trials. The trial
averaged power is then calculated and the corresponding ERD plots for subject 9 is shown
in Fig. 4.

The ERD plots show larger power in C4 than in C3 during left hand movement imag-
ination. On the other hand, C3 has large power than C4 during right hand movement
imagination. Recall that C3 and C4 are located on the left and right sensorimotor cor-
tex hand areas, respectively. Recall also, that the left sensorimotor cortex is responsible
for the contralateral (right) body movements, and vice versa. The ERD plots confirm this
phenomenon during movement imagination. It is worth noting, that the power is not
uniformly distributed along the frequency axis. Figure 4 shows that the most significant
power changes occur at 5-12 Hz. Another active frequency band is 18-23 Hz. When
comparing across the subjects, we do not find precisely same patterns regarding active
frequency bands. This finding confirms our objective to select subject-specific frequency
bands in online BCIL.

Optimal offline results
The offline data were analyzed using a total of 325 bandpass filters. For each pass-band, a
CSP filter was calculated and applied on the data. Finally, the filtered data were classified
and the CA was found. These exhaustive analysis was performed on a computer cluster
via the DTU Newton server. The optimal frequencies and accuracies of each test-subject
are listed in Table 1.

It can be seen that subject 9 has the highest offline CA (99.38 %). Subjects 10 and 12
also have high CAs. It is important to note that the optimal frequency ranges are differ-
ent across the subjects. Only two subjects (1 and 9) have optimal results with frequencies
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Fig. 4 ERD plots of C3 and C4 during left and right hand imagery movements from subject 9's offline data.
These plots illustrate the spectral power change versus time during imagery compared to the reference
interval. Notice the power decease in C4 during left hand imagery (a), and the power decrease in C3 during
right hand imagery (b)
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Table 1 The offline results of all test-subjects. The optimal accuracies listed in the right column are
found by analyzing the offline data using different bandpass filters. The optimal frequency ranges
listed in the middle column are the bandpass filters that result in optimal classification with the
optimal accuracy. While recording the EEG data, the electrode impedance was kept under 5 k2

Subjects # Optimal frequency range (Hz) CA (%)
1 07-14 61.25
2 09-18 7646
3 19-23 61.25
4 08-30 81.67
5 12-14 66.46
6 09-17 61.88
7 10-24 78.54
8 12-15 5854
9 05-12 99.38
10 19-27 98.75
11 20-25 67.08
12 11-14 97.29

roughly in the w-band. Remaining subjects have optimal frequencies either in the
beta-band or combined « — 8-band. Based on the offline results, the subjects were divided
into different categories (Table 2).

This shows that half of the subjects had accuracies below 75 %. Since well-functioning
online BCI requires relatively high accuracies, the subjects with accuracies above 75 %
have been considered (six subjects: 2, 4, 7,9, 10 and 12) for online measurements.

Online BCI

Cross feedback

This feedback system was tested 15 times in average for each of the six test subjects in
order to reach the CAs and MTDs (shown in Table 3). Considering the CAs, it was found
that all the test subjects except subject 2 could control the cross easily. Also, it is worth
noting that in terms of the MTDs, two of the standard deviations are extremely high (in
subjects 2 and 7). By studying the individual sessions of subject 7, it was found that the
first session (MTD of 52 s) differed significantly from the rest of the sessions (9.89 & 3.37
seconds). Regarding subject 2, the huge standard deviation is realistic, since low accuracy
generally leads to frequent misclassifications, and thereby results in prolonged trials. The
MTDs of this paradigm are generally high.

Basket feedback

Table 3 clearly show that all subjects, except subject 2 have CAs between 80 and 90 %.
Subject 2 struggled to control the ball to move to the target side each time. The other sub-
jects experienced the ease of moving the ball in the correct direction. The small standard

Table 2 Subject categories according to the offline analysis on CAs

Category Boundaries (%) Subjects #
Very bad <60 8

Bad 60 — 75 1,3,56,11
Good 75—90 2,4,7

Very good > 90 9,10,12
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Table 3 Results from the online sessions (subject 10 did not participate in Bar feedback sessions due
to personal reasons). In Basket feedback, the ball speed is predefined, and the subjects have no
influence on the trial time. Therefore the standard deviations of the MTD's for this case is omitted

Feedback Cross Basket Bar
Subject MTD CA MTD CA MTD CA

(s) (%) (s) (%) (s) (%)
Sub 2 2499 +£17.04 5667 15.73 56.07 13.03+£0349 6167
Sub 4 1734 +£08.14 7955 10.81 84.55 06.54 £0042 8167
Sub7 1691 £1746 9500 07.10 87.50 05.35+£00.14  100.00
Sub 9 21.02+£1080 7313 08.91 90.00 08.72£04.19 7750
Sub 10 1652 £0884 9533 19.22 86.67 — —
Sub 12 1344 £0449 7625 08.93 85.00 06.78 £0038 7750

Average 1799 £1051 791041520 1247+£0189 8149+£10.10 08.01£0148 80.01 £ 09.01

deviation values indicate that this feedback is more stable than the Cross feedback. How-
ever, there is huge inter-subject variations in the MTDs. While subject 7 had a MTD of
7.1 s, subjects 2 and 10 had both MTDs around 19 s. This huge difference are mainly due
to different ball speeds. Table 4 lists the average ball speeds for each subject (inter-session
and not intra-session ball speed variation). Based on these results, it has been proved that
using the basket paradigm, 90 % CA and around 8-s MTD is achievable.

Bar feedback

This feedback system was tested on all online subjects, except subject 10 (could not par-
ticipate due to personal reasons). In Table 3, the mean accuracies and trial durations for
the Bar Feedback are given. Subjects 4, 7, 9, and 12 accomplished the sessions with a mean
CA between 77.50 and 100.00 %. Subject 2’'s mean CA was higher than for the other two
feedback systems, but still significantly lower than the other subjects. By observing the
MTDs, it is found that the times are substantially lower than the trial durations for the
two other feedback systems.

Online results analysis

Inter-subject analysis

The online CAs along with the offline CAs for the 6 test subjects are illustrated in Fig. 5.
It can be clearly seen that although subject 9 had the highest offline CA, the online results
were the worst. Subject 7 on the other hand had the highest grand average online CA
(94.17 %). It is worth noting that only subject 7 improved the CA from offline to the
online. Subject 2 gave poor results compared with the other five subjects, both in terms
of CA and MTD. By studying the metadata of the subjects, we found that subject 2 was
the only left-handed subject among the six subjects. However, it is premature to conclude

Table 4 Average ball speed for each subject

Subject # Mean ball speed (5)
2 2.50
4 3.55
7 525
9 4.00
10 1.77

12 4.00
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Fig. 5 Comparative illustration of the accuracies obtained in offline, cross, basket and bar for all test-subjects

that the left-handed people perform worse than the right-handed ones from one isolated
case. It is been reported that BCI control does not work for 15-30 % of subjects [45], and
therefore it could be that subject 2 belong to this group of subjects.

Inter-feedback analysis

From the results in Table 3, we can see that, (i) Although all three feedback systems
resulted in more or less similar CAs, Cross feedback had shown significantly large devi-
ations, (ii) The MTDs differ significantly from each other; 18.31, 12.35 and 8.08 s,
respectively for the Cross, Basket and Bar feedbacks, and (iii) The cross feedback had
the highest standard deviation of the mean trial duration compared to the two other
paradigms. These findings indicate that the Cross feedback is not as stable as the other
two paradigms. It is however possible to refine this paradigm e.g. by reducing the distance
to the goals in order to reduce the MTD and at the same time improve the stability.

The learning effect

This is done by allowing one of the subjects (subject 4) to try the cross feedback on three
(Mondays) consecutive weeks and the CAs are plotted in Fig. 6. It can be seen that a small
but clear increase in the accuracy on the second and third measurement day. The red
linear trend-line also confirms this improvement. Notice that not only the accuracy was
improved each time, but also the standard deviation was reduced.

Trial duration vs. accuracy

Results from the online measurements showed, that when the CA was low, then reaching
the target became a difficult task (e.g. in Cross feedback). Furthermore, the MTD became
prolonged, since the wrong classifications should be corrected. However, the reverse rela-
tion is also valid: prolonged MTD leads to exhausting the user, leading to reduced imagery
performance and thus a reduced CA. Therefore, CA and MTD affect each other. In Fig. 7,
the mean CAs are plotted against their corresponding MTDs. The trend-line confirms
that longer MTD is related to lower CA, and vice versa.

Feedback improvements
During the online measurements with the three feedback systems, few implementation
errors were registered, and potential refinements were suggested. A general problem was
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Fig. 6 The accuracy progression of subject 4 as a function of time. The blue dots are the mean accuracies on
each day, and the red line is the linear trend-line

detected in all three paradigms. At the beginning of each trial (except the first trial), the
first few segments from the sliding window contained data from the previous trial due to
overlapping. Therefore these ‘old’ data could affect the first few classifications of the new
trial and in the worst case affect the first final classification of each trial (recall the vot-
ing process). Another potential improvement concerning all three feedback systems is to
illustrate the stepwise moves (of the cross, ball and the bar fill) as continuous moves. Even
though this change is only visual, it may minimize confusion, and prevent unconscious
step-synchronized body movements. Finally the last common improvement is to instruct
the subjects about the feedback paradigms (Cross and Basket: red target, Bars: direction
arrow) at least few seconds before each trial. In the current paradigms, it was introduced

100 =

80 g \
70

60 ¢

50
40
30
20
10

Accuracy [%]

0 T T T T T 1
0 5 10 15 20 25 30
Trial duration [s]

Fig. 7 Mean accuracies for all subjects plotted against trial duration. The red linear trend-line shows the
relation between accuracy and trial duration
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concurrently with the beginning of the trial. Thus, the subjects spent up to couple of
seconds to react on these commands while the segments from the sliding window were
classified, possibly wrongly. In the following three subsections, specific improvements
and changes of the paradigms are suggested.

Improvements of cross

Recall that there were ten steps to each target in the Cross feedback. The reason for imple-
menting such a large distance to the targets was to ensure that there was enough space to
correct wrong classifications. The analysis of the online measurements showed, that the
Cross paradigm resulted in prolonged and varied MTDs. Since all online recordings have
been saved, each online session was analyzed in order to investigate the movement behav-
ior of the cross. In other words, the CA and MTD of each session were recalculated after
reducing the target distance gradually down to one step. Figure 8 illustrates the mean CAs
of each test subject as a function of number of steps to the targets. It shows that the CAs
do not change significantly when reducing the target distance by few steps.

If we assume, that the maximum tolerable accuracy reduction is 10 %, then three or four
steps to the targets would be enough. According to this analysis, if the target distance is
reduced to four steps, the corresponding percentage change of the mean accuracies for
the test subjects are calculated and is tabulated in Table 5. Note that some of the CAs
increase when the target distance is reduced. It may be attributed to the fact that some
subjects become exhausted when passing the final steps (due to prolonged imagery). And
since fatigue may reduce the imagery performance, this could lead to faulty classifications.

The time reduction is also considered in this analysis. Figure 9 illustrates the estimated
MTDs for each subject as a function of target distance. A huge time reduction is achieved
if the distance is reduced. For instance, if the distance was four steps instead of ten, the
averaged MTD would be 5.42 s. It is worth noting, that the time reduction curves in Fig. 9
were exponentially decreasing with decreased target distance. This finding confirms the
fact that large distance to the targets leads to prolonged imagery, which in turn leads to

2
>
o
o
3
o
o
<
Sub. 7
40 L ——Sub.9
—=#— Sub. 10
Sub. 12
30 1 1 1 1 1 1 1 Il
1 2 3 4 5 6 7 8 9 10

Distance to targets [steps]

Fig. 8 Accuracy as a function of target distance for all six subjects
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Table 5 Analysis of results for target distance equal to four steps

Subject Estimated change Estimated time
in accuracy (%) reduction (%)
2 +1.96 —77.61
4 —4.60 —71.13
7 +1.75 —75.06
9 —0.85 —69.88
10 —4.20 —-59.17
12 —6.56 —64.70
Average —2.08 —69.59

fatigue and thus bad performance. Table 5 summarizes the analytical results for target
distance equal to four steps.

Improvements of basket

Since Basket feedback has limited MTD, reducing the target distance (number of steps to
the side borders in this case) will have less effect. However, the large number of online
measurements using Basket indicates that a distance of 20 steps is too long. Therefore, a
distance reduction may result in a reduction in MTD.

Improvements of bars

Some subjects experienced, that the command arrow was thin and unclear. Another prob-
lem occurred, when the filling difference between the left and right bars were small. For
instance, if both left and right bars were filled up with nine steps at the end of the trial,
then the last step decides the class of the trial. Because the figure clears when the decision
is made, the user will not be able to detect the decision. This problem can be solved by
viewing the decision in the beginning of the 5-second pause.

25

20

-
(6]

Classification time [s]
S

0 : 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Distance to targets [steps]

Fig. 9 The trial duration as a function of target distance
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EMG contribution in online BCI
Besides visually inspecting the subjects during the measurements, the EMG recorded dur-
ing the offline measurements were used to ensure that the ERDs of the SMR were due to
movement imagination rather than due to real muscle movements. The spectrogram of
the EMG data did not show a significant power change that could indicate that the sub-
ject was making a real hand flexion. It was found that the EMG analysis was in accordance
with the visual inspection, which showed that EMG activity was negligible for all subjects.
During the online measurements, EMG was not measured but was only visually
inspected. However, real and imaginary movements do not result in same EEG spatial pat-
terns. Therefore during online BCI, a CSP filter that is calculated from offline data with
minimal EMG activity will not result in optimal feature extraction if real movements were
performed. Consequently, real movements may probably lead to bad classification. This
hypothesis was tested during few online sessions: the subject was told to perform real
hand movements instead of imaginary movements. Many of the resulted classifications
were incorrect, and the feedback showed a more or less random path of the cross.

Conclusions

This paper has focused on the challenges of developing a real-time BCI system using the
desynchronization phenomenon of the SMR. The first part was to conduct offline cali-
bration measurements to determine the optimal subject-specific parameters to use in the
online part. Offline data were processed using CSP to extract the relevant features. BLC
was trained using the labeled features from each data. Twelve test-subjects participated
in the offline measurements and six of them qualified to participate in the online mea-
surements. Three online feedback paradigms were designed and used (cross, basket, and
bars) in this work. While all three paradigms resulted in similar CAs, the results of cross
indicated instability. This was reflected by prolonged trial time, large standard deviation
of the trial times, and the large deviation of the CAs. The overall online CA was 80 %. It
was found, by studying possible improvements of cross, that reducing the target distance
from ten steps to four steps resulted in 70 % reduction of MTD. This improvement will
only reducethe CA by 2 %.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

AE carried out all the simulation studies and helped with preparing the manuscript. All the remaining authors
contributed to the preparation of the manuscript and contributed equally to the work. All authors read and approved
the final manuscript.

Received: 22 July 2015 Accepted: 9 October 2015
Published online: 28 October 2015

References

1. Dornhege G, Millan J, Hinterberger T, McFarland DJ, Muller KR. Toward brain-computer interfacing. Cambridge:
MIT Press; 2007.

2. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, et al. Brain-computer interface
technology: a review of the first international meeting. IEEE Trans Neural Syst Rehabil Eng. 2000;8(2):164-73.

3. Birbaumer N, Ghanayim N, Hinterberger T, Iversen |, Kotchoubey B, Kibler A, et al. A spelling device for the
paralysed. Nature. 1999,398:297-8.

4. Kubler A, Birbaumer N. Brain-computer interfaces and communication in paralysis: extinction of goal directed
thinking in completely paralysed patients? Clin Neurophysiol. 2008;119:2658-66.

5. Kubler A. Brain-computer interfacing: science fiction has come true. Brain. 2013;136:2001-4.

6. Sellers EW, Donchin E. A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol.
2006;117:538-48.



El-Madani et al. EPJ Nonlinear Biomedical Physics (2015) 3:9 Page 16 of 17

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Wolpaw JR, Birbaumer N, Pfurtscheller G, Mcfarland DJ, Vaughan TM. Brain-computer interfaces for
communication and control. Clin Neurophysiol. 2002,6:767-91.

Del R Millan JJ, Galan F, Vanhooydonck D, Lew E, Philips J, Nuttin M. Asynchronous non-invasive brain-actuated
control of an intelligent wheelchair. In: Conf. Proc. of the 31st IEEE Eng. Med. Biol. Soc. USA. Minnesota: Hilton
Minneapolis; 2009. p.3361-4.

Mohebbi A, Engelsholm SK, Puthusserypady S, Kjaer TW, Thomsen CE, Sorensen HBD. A brain computer interface
for robust wheelchair control application based on pseudorandom code modulated visual evoked potential. In:
Proc. of the 37th Intl. Conf. of the IEEE Eng. Med. Biol. Soc. Milan, Italy; 2015.

Ali A, Puthusserypady S. A 3D learning playground for potential attention training in ADHD: A brain computer
interface approach. In: Proc. of the 37th Intl. Conf. of the IEEE Eng. Med. Biol. Soc. Milan, Italy; 2015.

Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7:1032-43.
Blankertz B, Tangermann M, Vidaurre C, Fazli S, Sannelli C, Haufe S, et al. The Berlin brain-computer interface:
non-medical uses of BCl technology. Front Neuroscience. 2010;4(Article 198):1-17.

Mdller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B. Machine learning for real-time single-trial
EEG-analysis: from brain-computer interfacing to mental state monitoring. JI Neurosci Methods. 2007;167(1):82-90.
Serby H, Yom-Tov E, Inbar GF. An improved P300-based brain-computer interface. I[EEE Trans Neural Syst Rehabil
Eng. 2005;13(1):89-98.

Lugo ZR, Rodriguez J, Lechner A, Ortner R, Gantner IS, Laureys S, et al. A vibrotactile p300-based brain-computer
interface for consciousness detection and communication. Clin EEG Neurosci. 2014:45(1):14-21.

Piccione F, Giorgi F, Tonin P, Priftis K, Giove S, Silvoni S, et al. P300-based brain computer interface: reliability and
performance in healthy and paralysed participants. Clin Neurophysiol. 2006;117(3):531-7.

Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain
potentials. Electroenceph Clin Neurophysiol. 1988;70(6):510-23.

Bayliss JD. Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans Neural Syst
Rehabil Eng. 2003;11(2):113-6.

Vilic A, Kjaer TW, Thomsen CE, Puthusserypady S, Sorensen HBD. DTU BCl speller: an SSVEP-based spelling system
with dictionary support. In: Proc. of the 35th IEEE Eng. Med. Biol. Soc. Osaka, Japan; 2013. p. 2212-5.

. Ortner R, Allison B, Korisek G, Gaggl H, Pfurtscheller G. An SSVEP BCl to control a hand orthosis for persons with

Tetraplegia. IEEE Trans Neural Syst Rehabil Eng. 2011;19(1):1-5.

Leow R, Ibrahim F, Moghavvemi M. Development of a steady state visual evoked potential (SSVEP)-based brain
computer interface (BCI) system. In: Intl. Conf. on Intell. and Adv. Syst. Kuala Lumpur; 2007. p.321-4.

Liavas AP, Moustakides GV, Henning G, Psarakis EZ, Husar P. A periodogram-based method for the detection of
steady-state visually evoked potentials. IEEE Trans Biomed Eng. 1998;45(2):242-8.

Cheng M, Gao X, Gao S, Xu D. Design and implementation of a brain-computer interface with high transfer rates.
|EEE Trans Biomed Eng. 2002;49(10):1181-6.

Wolpaw JR, McFarland DJ. Control of a two-dimensional movement signal by a noninvasive brain-computer
interface in humans. Proc Nat Acad Sci. 2004;17:849-54.

McFarland DJ, Wolpaw JR. Sensorimotor rhythm-based braincomputer interface (BCl): feature selection by
regression improves performance. IEEE Trans Neural Syst Rehabil Eng. 2005;13(3):372-9.

Yue J, Zhou Z, Jiang J, LiuY, Hu D. Balancing a simulated inverted pendulum through motor imagery: an
EEG-based real-time control paradigm. Neurosci Lett. 2012;524(2):95-100.

Friedricha E, Schererb R, Neuper C. Long-term evaluation of a 4-class imagery-based brain-computer interface. Clin.
Neurophysiol. 2013;124(5):916-27.

Hazrati M, Erfanian A. An online EEG-based brain-computer interface for controlling hand grasp using an adaptive
probabilistic neural network. Med Eng Phys. 2010;32(7):730-9.

Faller J, Vidaurre C, Solis-Escalante T, Neuper C, Scherer R. Auto-calibration and recurrent adaptation: towards a
plug and play online ERD-BCI. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):313-9.

Iversen IH, Ghanayim N, Kibler A, Neumann N, Birbaumer N, Kaiser J. A brain-computer interface tool to assess
cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis. Clin Neurophysiol.
2008;119(10):2214-23.

Decety J. The neurophysiological basis of motor imagery. Behav Brain Res. 1996,77(1-2):45-52.

Pfurtscheller G, Lopes DSF. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin
Neurophysiol. 1999;110(11):1842-1457.

Royer A, He B. Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms.
JI Neural Eng. 2009;6(1). doi:10.1088/1741-2560/6/1/016005.

Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G Miller KR. The Berlin brain-computer interface: accurate
performance from first-session in BCI-Naive Subjects. IEEE Trans on Biomed Eng. 2008;55(10):2452-62.

Vuckovic A, Sepulveda F. Quantification and visualisation of differences between two motor tasks based on energy
density maps for brain-computer interface applications. Clin Neurophysiol. 2008;119(2):446-58.

Kubler A, Muller KR. An introduction to brain-computer interfacing. Cambridge: MIT Press, p. 2007.

El-Madani A. Introduction to brain computer interface. Study report. Denmark: Dep. Elec. Eng., DTU, Lyngby;2009.
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):
97-113.

Muller-Gerking J, Pfurtscheller G, Flyvbjerg H. Designing optimal spatial filters for single-trial EEG classification in a
movement task. Clin Neurophysiol. 1999;110(5):787-98.

Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller KR. Optimizing spatial filters for robust EEG single-trial
analysis. IEEE Sig Process Mag. 2008;25(1):41-56.

Fukunaga K. Random vectors and their properties. In: Introduction to statistical pattern recognition. New York:
Morgan Kaufmann Publishers; 1990. p. 10-35.

Pedro D, Michael P. On the optimality of the simple Bayesian classifier uner zero-one loss. Mach Learn. 1997,29:
103-30.


http://dx.doi.org/10.1088/1741--2560/6/1/016005

El-Madani et al. EPJ Nonlinear Biomedical Physics (2015) 3:9 Page 17 of 17

43, Jonsson M. Brain computer interface. MSc. Thesis. Denmark: Dep. Elec. Eng., DTU; 2008.

44, Blumberg J, Rickert J, Waldert S, Schulze-Bonhage A, Aertsen A, Mehring C. 2007. Adaptive classification for brain
computer interfaces, Vol. 1. France: Med. Biol. Soc. Conf. Lyon.

45, Dickhaus T, Sannelli C, Miller KR, Curio G, Blankertz B. Predicting BCI performance to study BCl illiteracy. Bio. Med.
Centr. Neuroscience. 2009;10(Suppl 1):84. doi:10.1186/1471-2202-10-S1-P84.

46. Vidaurre C, Blankertz B. Towards a cure for BCl illiteracy. Brain Topogr. 2010;23(2):194-8.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://dx.doi.org/10.1186/1471-2202-10-S1-P84

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Feature extraction
	Classification
	BLC

	Feedback systems
	Cross feedback
	Basket feedback
	Bar feedback


	Results and discussions
	Offline BCI
	ERD plots
	Optimal offline results

	Online BCI
	Cross feedback
	Basket feedback
	Bar feedback

	Online results analysis
	Inter-subject analysis
	Inter-feedback analysis
	The learning effect
	Trial duration vs. accuracy

	Feedback improvements
	Improvements of cross
	Improvements of basket
	Improvements of bars

	EMG contribution in online BCI

	Conclusions
	Competing interests
	Authors' contributions
	References



