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Abstract

Background: The inverse relationship between movement speed and accuracy in
goal-directed aiming is mostly investigated using the classic Fitts’ paradigm. According
to Fitts’ law, movement time scales linearly with a single quantity, the index of difficulty
(ID), which quantifies task difficulty through the quotient of target width and distance.
Fitts’ law remains silent, however, on how ID affects the dynamic and kinematic patterns
(i.e., perceptual-motor system’s organization) in goal-directed aiming, a question that is
still partially answered only.

Methods: Therefore, we here investigated the Fitts’ task performed in a discrete as well
as a cyclic task under seven IDs obtained either by scaling target width under constant
amplitude or by scaling target distance under constant target width.

Results: Under all experimental conditions Fitts’ law approximately held. However,
qualitative and quantitative dynamic as well as kinematic differences for a given ID were
found in how the different task variants were performed. That is, while ID predicted
movement time, its value in predicting movement organization appeared to be limited.

Conclusion: We conclude that a complete description of Fitts’ law has yet to be
achieved and speculate that the pertinence of the index of difficulty in studying the
dynamics underlying goal-directed aiming may have to be reconsidered.
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Background
More than 60 years ago, Paul Fitts initiated a novel paradigm when he asked participants to

cyclically move a stylus between two targets characterized by a width W and separated by a

distance D [1]. By systematically varying D andW, he found that movement timeMT related

linearly to the ratio of D and W, MT= a+ b× log2 (2D/W). This linear relation, now known

as Fitts’ law, was next found to hold also for discrete aiming [2]. In Fitts’ law, the index of dif-

ficulty ID = log2 (2D/W) quantifies task difficulty as an informational quantity in bits [2, 3].

Over the years, several authors have voiced criticism as to the functional form of the scaling

of MT with ID as well as on whether the ID as formulated by Fitts is the most appropriate

one [4–8]. Regardless, few will debate that as a first approximation, MT scales linearly with

the ID, which has been repeatedly shown in discrete and cyclical performances alike [9–13].

Fitts’ law, however, is silent on how the movements’ organization changes as the ID

is scaled. In addressing this issue, one prominent class of models (sub-movement
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models) focuses on the presence and features of primary and corrective secondary (and

sometimes more) sub-movements as a function of W and D [5, 6, 14]. The features as-

sociated with these movements, and those that deemed most relevant, are typically sca-

lar variables (duration, [average] velocity, proportion of corrective movements, etc.).

Another prominent class of models (dynamical models) seeks to understand how the

movements’ kinematic and underlying dynamics change when D and/or W are system-

atically changed. In this case, the focus is geared towards trajectories in the Hooke’s

plane and/or phase space [11, 15, 16], and the identification of the dynamics as observ-

able in the latter [17, 18]. In that regard, deterministic, autonomous, and time-

continuous systems are unambiguously described by their flow in phase (or state) space

(or vector field), i.e., the space spanned by the system’s state variables [19]. For move-

ments along a single physical direction, as in a (sliding) Fitts’ task, it is commonplace

to use the movement’s position and its time-derivative velocity as the state variables

[11, 20, 21] (but see [22, 23] for a critical discussion). The attractors that may live in

such two-dimensional spaces are limited to (different kinds of ) fixed points (i.e., points

where velocity and acceleration are zero) and limit cycles (nonlinear closed orbits),

which are associated with discrete and rhythmic movements, respectively [24, 25].

Changing the system’s parameter(s) modifies the phase flow, and may evoke a bifur-

cation (i.e., a change in the system’s solution(s)). If so, the parameter is referred to as a

control or bifurcation parameter. Grounded in this latter perspective, the present study

aimed to identify the dynamics, and further characterize the movements’ kinematics,

when changing the ID by varying W and D independently, in both discrete and cyclic

versions of Fitts’ task.

In that regard, for the cyclic Fitts’ task version, it has been shown that gradually chan-

ging ID induces a gradual adjustment of the movement kinematics [11, 15], albeit less so

when changing D than when changing W. In the latter case, the gradual adjustment may

evoke an abrupt transition in the dynamics underlying the performance [17, 26] via a

homoclinic bifurcation (i.e., from a limit cyclic dynamics to (two) fixed points, each having

one stable and one unstable direction [i.e., saddles]); [17]). As hinted at, changing ID via

target width W and distance D affects the aiming movement’s velocity profiles differently

[7, 11, 27]: increasing D mainly stretches the (bell-shaped) velocity profile, while increas-

ing W renders it skewed (the deceleration phase lengthens relative to the acceleration

phase). Thus, it is not clear if the scaling of ID per se induced the bifurcation in [17] or if

effectively the manipulation of W did so. For discrete task performance, the pattern of

kinematic changes as a function of ID (including the D and W differentiation) yields some

similarities with those observed in the cyclic task version [12, 28]. The discrete and cyclic

task, however, are fundamentally different in that, in the former but not the latter, move-

ment velocity and acceleration must be zero before initiating the movement and upon

ending it [10]. In this case, it seems self-evident to assume the existence of a fixed-point

dynamics in the discrete task version. Various fixed-point dynamics scenarios, next to the

above-mentioned connected saddles, are realizable, however. For instance, Schöner [25]

has proposed that a fixed point (at location A) vanishes so as to temporally give way to a

limit cycle—causing the movement, after which the limit cycle vanishes and the fixed

point (at location B) re-occurs. Alternatively, a fixed point may be driven through phase

space, more or less continuously changing the phase flow so that the system is ‘dragged

behind it” [29]. This scenario constitutes an interpretation of equilibrium point models
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[30] in the framework of dynamical systems [31]. In this case, the trajectories in the phase

space can be expected to be ‘wiggly’ and reveal little local convergence (i.e., overlaid trajec-

tories can be expected to have a similar thickness throughout). Yet another possible

realization involves a competition in which an active fixed point at location A vanishes

while simultaneously another at location B comes into existence [29]. Indeed, while the

discrete Fitts’ task must involve fixed points, what remains unknown is: i) whether they

are similar under D andW induced ID scaling, ii) if ID changes evoke a transition between

mechanisms, and iii) if the fixed points assumed in the discrete task are the same as those

found for the (W induced ID scaling) cyclic task. In fact, for the cyclic task, it is not

known either if a transition occurs if ID is altered via target distance D. Teasing apart the

contributions of D and W to the scaling of the ID will allow us to investigate whether ID,

which plays a primordial role in the Fitts’ paradigm, acts as bifurcation parameter or if ef-

fectively either D or W or both do so.

Based on the above reasoning, in the discrete task we predicted to observe fixed-

point dynamics under all conditions. Under the distance manipulation, for low ID, the

(average) velocity can be expected to be very low. We therefore expected to find indica-

tions for the existence of a driven fixed-point scenario. For the cyclic task, in line with

previous findings we predicted to observe a bifurcation from a limit cycle dynamics to

a fixed-point dynamics with decreasing target width [17]. Finally, we expected to find

evidence either for a limit cycle dynamics or the driven fixed-point at small target dis-

tances and time-invariant fixed points at large target distances.

We examined our predictions primarily by investigating the underlying Fitts’ task

performance under discrete and rhythmic task versions and identifying bifurcations (if

existent). In addition, to further characterize task performance, we also extracted vari-

ous kinematic features of the movements. Thereto, we designed a Fitts’ task that was

performed in the discrete and cyclic mode, and in which task difficulty was scaled via

D and W separately in different sessions. We found that while ID predicted movement

time, it did not uniquely predict the dynamics and kinematics associated with the

task performances.

Results
What participants do in a Fitts’ task typically (slightly) deviates from the imposed task

constraints. That is, the produced end-point variability and movement amplitude do

not map one-to-one onto the task-defined target width W and distance D. As com-

monly done, we therefore computed the effective amplitude and the effective target

width (see Methods) and calculated the effective ID as IDe = log2(2Ae/We). We report

our results based on the IDe.

As a first step in our analysis, we examined how MT changed under the different experi-

mental factors. MT was lower in the discrete task (mean ± SD = 0.75 ± 0.04) than in

the cyclic task (mean ± SD = 0.80 ± 0.04; F(1,12) = 10.270, p < .01, η2 = .461) and higher

in the distance manipulation (mean ± SD = 0.82 ± 0.05) than in width manipulation

(mean ± SD = 0.73 ± 0.03; F(1,12) = 23.975, p < .0001, η2 = .666). The Task ×Manipulation

interaction (F(1,12) = 22.203, p < .005, η2= .649) showed, however, that the effect of Task

only held for the distance manipulation (Fig. 1a). As expected, MT increased with IDe

(F(1.449,17.383) = 148.827, p < .0001, η2 = .925), but did so in a manner that interacted with

Task (F(2.903,34.842) = 18.228, p < .0001, η2 = .603; Fig. 1b), and Task and Manipulation



Fig. 1 Average movement time. a MT is lower in the discrete than in the cyclic task in the distance but not
in the width conditions. b At low IDe MT is higher in the discrete task than in the cyclic task, while at higher
IDe this is inversed. c This effect owes largely to the width conditions. d For distance, the cyclic MT equals
the discrete MT at low IDe but is (again) higher at high IDe
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(F(2.770,33.236) = 3.376, p < .05, η2 = .220; Fig. 1c, d). For each task and manipulation com-

bination, we linearly regressed MT against effective ID (for each participant), and investi-

gated the regressions’ slopes with a 2 (Task) × 2 (Manipulation) ANOVA. The average R2

equalled .91 (±0.08). The slopes in the discrete task (mean ± SD= 0.19 ± 0.01) were smaller

than in the cyclic task (mean ± SD= 0.24 ± 0.02; F(1,12) = 56.856, p < .0001, η2 = .826), and

those in distance conditions (mean ± SD= 0.18 ± 0.01) were smaller than those in the width

conditions (mean ± SD= 0.24 ± 0.02; F(1,12) = 75.028, p < .0001, η2 = .862). The significant

Task ×Manipulation interaction (F(1,12) = 6.929, p < .05, η2= .366) indicated that the effect

of Manipulation was stronger in the cyclic task (mean ± SD = 0.20 ± 0.02 versus 0.28 ± 0.02

for distance and width scaling, respectively) than in the discrete task (mean ± SD= 0.16 ±

0.01 versus 0.19 ± 0.01 for distance and width scaling, respectively). Thus, both the task ver-

sion (discrete, cyclic) and how ID was varied (via D or W) altered the rate of MT increase

with IDe. At the same time, as a first approximation, the linear relation predicted by Fitts’

law held in all Task ×Manipulation conditions.

To investigate the dynamics associated with the movements in the various conditions,

we computed the vector fields, and statistically analysed the maximal angle θmax [17]. In

that regard, each vector k in a vector field has (up to) eight neighbouring vectors whose

direction relative to vector k can be represented by an angle. θmax represents the max-

imum of the angles of vector k with its neighbouring vectors. For θmax > 90°, we consider

that the movements in the corresponding trial pertained to a fixed-point dynamics. In al-

most all conditions, except for the cyclic-width condition at a low IDe and for a few trials

in the cyclic-distance condition, indications for the existence of fixed points in the target

regions were found (see Fig. 2 and Table 1). This observation was statistically corrobo-

rated by the ANOVA on θmax (Additional file 1), which indicated that θmax was higher in

the discrete task (mean ± SD = 171° ± 0.6) than in the cyclic one (mean ± SD = 130° ± 3.5;

F(1,12) = 123.893, p < .0001, η2 = .912), and higher in the distance conditions (mean ±

SD= 160° ± 2.3) relative to those of width (mean ± SD= 142° ± 1.4; F(1,12) = 99.556,

p < .0001, η2 = .892). As expected, θmax became larger as IDe increased (F(3.765,45.180) =

28.289, p < .0001, η2 = .702). The distance versus width effect, however, was only ob-

served for the cyclic task (Task ×Manipulation, F(1,12) = 54.782, p < .0001, η2 = .820).

In addition, the increase of θmax with IDe occurred primarily in the width (Manipula-

tion × IDe, F(3.010,36.126) = 18.737, p < .0001, η2 = .610) and in the cyclic conditions

(Task × IDe, F(3.552,42.267) = 43.048, p < .0001, η2 = .782). Finally, the Task ×Manipu-

lation × IDe interaction (F(3.022,36.261) = 9.456, p < .0001, η2 = .441) showed that θmax



Fig. 2 Angle diagrams. The upper versus lower two rows represent angle diagrams from a single participant of
the discrete and cyclic mode, respectively. For both row pairs, the upper panels show the distance conditions
while the lower ones display the width conditions. IDe increases form left to right. The colour coding (at the
right) represents the maximal angle between neighbouring vectors. Red areas indicate locally opposing angles,
implying the existence of a fixed point. Their absence suggests the existence of a limit cycle
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was high (>130°) and varied little only with IDe in all task–manipulation combinations

except for that of cyclic–width. As can be seen in Table 1 (see also Additional file 2),

the number of participants in which fixed points were identified (in correspondence

with the criterion outlined above) always equalled the total number of participant

(i.e., n = 13) in all discrete task conditions. In the cyclic-discrete task conditions, fixed

points were always found for the higher IDe. However, all but one (2 IDe) or 3 partici-

pants (1 IDe) did not show a fixed-point dynamics at low IDe. Two of the partici-

pants that did not adhere to a fixed-point dynamics at IDe = 4.9 were ‘stand-alone’

incidences. In one participant no fixed points were found for the first three IDe's,

that is, this participant’s behaviour in all likelihood showed a true transition. In the

cyclic-width task conditions, all participants showed a transition from a limit cycle

dynamics to a fixed points dynamics with increasing IDe, albeit at different IDe.

Thus, across the board (with a single exception), a limit cycle dynamics was opera-

tive in the cyclic–width condition at IDe up to about 5.6, whereas a fixed-point dy-

namics governed all other conditions.

Topologically, the vector fields of all conditions in which a fixed-point dynamics was iden-

tified were indistinguishable. For cyclic Fitts’ task performance the gradual up-scaling of task

difficulty, in particular through manipulation of target width, gradually increases the degree
Table 1 Number of participants for whom fixed points were identified per condition

IDe

3.6 4.3 4.9 5.6 6.3 7.0 7.7

Task Manipulation

Discrete Distance 13 13 13 13 13 13 13

Width 13 13 13 13 13 13 13

Cyclic Distance 12 12 10 13 13 13 13

Width 0 0 2 7 12 13 13
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of the system's nonlinearity [11]. Fig. 2 suggests that this was also the case for the discrete

task performances (see also [12]). The degree of nonlinearity does not uniquely map onto a

system’s topological organization. Its evolution as a function of IDe, however, informs about

the quantitative changes in the movement dynamics. We summarize these changes via RAT/

MT, which quantifies the degree of symmetry of the movement velocity profile. RAT/MT was

lower in the discrete task (mean ± SE = 0.35 ± 0.02) than in the cyclic task (mean ± SD =

0.39 ± 0.04; F(1,12) = 28.982, p < .0001, η2 = .707), but primarily so in the width conditions

(Task ×Manipulation (F(1,12) = 53.321, p < .0001, η2 = .816; Fig. 3a). In line therewith, RAT/

MT was lower in the distance manipulation (mean ± SD= 0.34 ± 0.02) than in that of the

width manipulation (mean ± SD= 0.39 ± 0.01; F(1,12) = 36.564, p < .0001, η2 = .753). At first

glance, this latter finding appears to contradict established knowledge [7, 11, 12, 27]; it is

important to recall therefore, that in the present distance manipulation, the fixed tar-

get width was always very small (0.31 cm). As expected, RAT/MT decreased as IDe in-

creased (F(2.205,26.458) = 136.922, p < .0001, η2 = .919). This decrease was stronger

for discrete than for the cyclic conditions, and at high IDe the task mode differences

vanished (Task × IDe; F(2.908,34.899) = 14.305, p < .0001, η2 = .544; Fig. 3b). Similarly,

the interaction between Manipulation and IDe (F(2.068,24.822) = 42.956, p < .0001, η2

= .782) indicated that the manipulation differences vanished with increasing IDe. Finally, the

Task ×Manipulation × IDe interaction (F(3.625,43.504) = 7.302, p < .0001, η2 = .378) indi-

cated that RAT/MT decreased faster in the cyclic than in the discrete task mode with increas-

ing IDe for the width conditions but not so for the distance conditions (Fig. 3c, d). Thus, the

velocity profiles became more skewed with increasing IDe (i.e., the nonlinearity increased).

Whereas this effect was similar for both tasks in the distance manipulation, for the width

manipulation, the profiles were more symmetric at low IDe in the cyclic task than in the

discrete task. This latter difference vanished as in both task modes the profiles became more

asymmetric (i.e., the movements became more nonlinear).

As indicated in the Background section, we expected that under the distance manipu-

lation at low ID a driven fixed point would govern the movements. In such a dynamic

system, the phase space trajectories can be expected to be wiggly (and show little local

convergence), and thus to be variable from one trial to the next. We therefore exam-

ined the trajectory variability using PCA (see also Additional file 3), and subjected the

first eigenvalue to an ANOVA. Please note that the more variable the trajectories are,

the smaller the first eigenvalue is. In fact, the variance that is not accounted for by the
Fig. 3 Ratio AT/MT. a The larger RAT/MT in the width condition relative to the distance conditions is most
pronounced in the cyclic task mode. b At low IDe RAT/MT is lower in the discrete task than in the cyclic task,
while at higher IDe RAT/MT is similar. c This interaction is due to the width conditions. d In the distance
conditions RAT/MT is similar and decreasing with IDe for both task modes
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first principal component is orthogonal to it so that the first eigenvalue can be inter-

preted as reflecting the degree of convergence towards the trajectory associated with

the first principal component. Neither the effect of Task nor that of IDe was significant

(p > .1 and p > .05, respectively). In contrast, the trajectories were more variable (i.e.,

the 1st eigenvalue smaller) in the distance conditions (mean ± SE = .76 ± 0.01) than in

those of width (mean ± SE = .84 ± 0.01; F(1,12) = 140.683, p < .0001, η2 = .921). The

Task ×Manipulation interaction (F(1,12) = 17.132, p < .0005, η2 = .588) indicated that

the difference between task manipulations was larger in the cyclic task mode than in

the discrete one. The significant interaction between Task and IDe (F(3.374,40.486) =

26.453, p < .0001, η2 = .688), Manipulation and IDe (F(2.713,32.559) = 43.106, p < .0001,

η2 = .782), and Task, Manipulation and IDe (F(3.061,36.734) = 7.385, p < .005, η2 = .381)

are displayed in Fig. 4. In combination, these interactions showed that at low IDe, the

trajectory variability in the discrete task was larger than that of the cyclic task, which

inversed at high IDe (Fig. 4a). Further, the trajectories were most variable at low IDe in

the distance manipulation, and the variability decreased as IDe increased (Fig. 4b), The

inverse was observed for the width conditions. The effect of increasing ID via target

distance was comparable for both tasks (Fig. 4c, d). Decreasing target width, however,

hardly affected the trajectory variability in the discrete task, but it led to an increased

variability in the cyclic task. For the latter, at low IDe, that is, when a limit cycle dynam-

ics was invariantly present, the trajectories were the least variable in the entire dataset.

As for the movement organization under the different conditions, our results revealed

identical topological organizations (fixed-point dynamics) under all but the cyclic-width task

version at low IDe (and for one participant in the cyclic-distance task at low IDe). At the

same time, however, the discrete and cyclic task modes are set apart in terms of the degree

of symmetry of movement velocities, and particularly, trajectory variability. By hypothesis,

this distinction may imply that in the cyclic task mode, the dynamical organization (i.e., the

phase flow) remains invariant throughout the entire trial, independent of whether a fixed-

point or limit cycle dynamics is adhered to. For the discrete task mode, this will actually be

the same. In this case, however, prior to and following each single aiming the movement-

task organization will be (has to be) ‘dismantled’ (to return to the home position) and

assembled for the execution of the next trial. Consequently, additional performance variabil-

ity can be expected for the discrete task mode relative to the cyclic one as the trial-to-trial

re-establishment of the movement organization adds a source of variability for the former
Fig. 4 PCA: 1st eigenvalue. a Trajectory variability decreased with increasing IDe for the discrete task mode
whereas it increased in the cyclic mode (from the 3rd IDe onwards). b Similarly, trajectory variability in the
distance conditions decreased with increasing IDe whereas that in the width conditions increased. c, d This
effect, however, was most pronounced for the cyclic task. In the discrete task trajectory variability in the
width condition stayed about the same for all IDe
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task mode relative to the latter. In terms of Saltzman and Munhall’s [32] wording, additional

variability in repeated discrete aiming relative to continuous cyclic aiming is introduced in

terms of parameter dynamics. We tested this hypothesis by focussing on the variability

(through the coefficient of variation) of the variable central to Fitts’ law, that is movement

time. Consistent with the hypothesis, the movement time’s coefficient of variation

(CVMT) was larger in the discrete task (mean ± SD = 1.18 ± 0.01) than in the cyclic

one (mean ± SD = 1.12 ± 0.01; F(1,12) = 63.735, p < .0001, η2 = .842), and also larger

in the distance conditions (mean ± SD = 1.16 ± 0.01) than in the width conditions

(mean ± SD = 1.13 ± 0.01; F(1,12) = 43.829, p < .0001, η2 = .785). This latter effect was

stronger in the cyclic than in the discrete task (Task ×Manipulation; F(1,12) = 5.271,

p < .05, η2 = .305; Fig. 5a). Further, CVMT decreased with increasing IDe

(F(4.306,51.667) = 6.812, p < .0001, η2 = .362); this effect, however, was confined to the

discrete task (Task × IDe; F(3.201,38.417) = 7.810, p < .0001, η2 = .394; Fig. 5b). Finally,

the interaction between Manipulation and IDe (F(3.526,42.317) = 55.529, p < .0001, η2= .822)

indicated that at low IDe, the CVMT under the distance manipulation, which decreased

strongly as IDe increased, was almost twice as high as that under the width manipulation,

which increased moderately as IDe increased (Fig. 5c).

The pattern of intra-participant RAT/MT variability (coefficient of variation) strongly

resembled that of CVMT, and is reported in Additional file 4.

Discussion
In the present study, we investigated both the dynamics and kinematics underlying

Fitts’ task performance during discrete and cyclic task modes when ID was varied

through distance and width independently. Most importantly regarding the dynamics,

consistent with previous observations [17], in the cyclic task setting a transition from a

limit cycle to a fixed-point dynamics occurred when scaling the ID via target width. In

contrast to the expectation voiced in that study, a similar transition was not observed

here when varying ID via the distance separating the targets. Indeed, varying target dis-

tance did not affect the observed movement’s topology, at least not in the presently

studied range. In this case, fixed points were found throughout the entire ID range (ex-

cept for a few cases, mainly one participant). This result suggests that, in general, the

index of difficulty per se does not uniquely dictate the dynamical organization of rapid

aiming movements, thereby disqualifying as a bifurcation parameter. That function,
Fig. 5 CV movement time. a The distance-width CVMT difference is moderately stronger in the cyclic than in
the discrete task mode. b In the discrete task CVMT increases with IDe whereas in the cyclic task it decreases. c In
the distance conditions CVMT decreases with increasing IDe whereas in the width conditions it increases
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however, appeared to be fulfilled by target width, even though only so for the cyclic

task mode. Indeed, varying target distance did not affect the movement’s topology ob-

served, at least not in the presently studied range. It cannot be ruled out, however, that

the smallness of the target (0.31 cm) under the present distance manipulations hin-

dered the occurrence of a limit cycle dynamics (or any other; see below) at specific tar-

get distances.

Furthermore, trajectory variability changed in opposing direction with decreasing tar-

get width for the discrete and cyclic task. This observation seems hard to reconcile with

the idea that the kinematic re-organization as a function of (varying) target width for

both task modes is the same. That is, even if varying target width drives the sensori-

motor system through a bifurcation when operating in the discrete task mode, it is un-

likely that the bifurcation type matches the one observed in the cyclic task.

Confirmation (or not) of this hypothesis, however, will require further investigation.

Concerning the effects on the movement kinematics, we found that how ID was var-

ied (i.e., via D or W) as well as the nature of the task (i.e., discrete or cyclic) had pro-

nounced effects on the movement kinematics investigated. In that regard, it is often

stated that scaling target distance versus its width ‘simply’ stretches the velocity profile

or skews it, respectively [7, 11, 12]. Here, we found that although increasing the ID by

scaling target width reduced the degree asymmetry of the movement’s velocity profile

more than under the distance scaling, the latter also reduced it (Fig. 3b). Again, this

may to some extent be due to the smallness of the target under the present distance

scaling. By comparison, we here used a target width smaller than the one used in [12]

and [11] under a (modestly; relative to [10]) larger distance scaling. A closer look at

these studies, however, shows that while, indeed, the degree of asymmetry increases

markedly more under the width than distance scaling, categorically setting apart the ef-

fects of these variations in terms of skewing versus stretching the velocity profiles ap-

pears a simplification that does not do justice to the observations.

Further, the degree of asymmetry increased with decreasing target width. In that case,

at low ID, the discrete movements were more asymmetric than the cyclic ones, while at

high ID, this difference vanished as for both task modes the asymmetry increased. The

initial difference, as well as the evolution, can be understood when considering that

discrete movements always contain a zero velocity and acceleration start and end

points, which emerge at higher ID only for cyclic movements. Indeed, under the dis-

tance scaling, the symmetry reduction was similar for the discrete and cyclic task mode

(Fig. 3d), which was always governed by a fixed-point dynamics.

The effects of varying target distance versus width were not limited to the move-

ment’s velocity symmetry. Specifically, increasing target distance (under constant target

width) reduced the movement’s trajectory variability irrespective of task mode. As peak

velocity also increases with increasing distance (Additional file 5), this effect contrasts

the signal-dependent noise perspective [33]. Reasoning from a dynamical perspective,

and assuming noise to be approximately constant, a reduction in trajectory variability

may come about by an increased (more or less local) convergence of the phase flows

underlying the movements (i.e., an increased tendency of the vectors pointing towards

a manifold in the state space) and/or by an increased contribution of the deterministic

dynamics relative to the stochastic dynamics (i.e., an increased length of the vectors).

Under this perspective, increasing the ID via target distance is likely to result in an
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increased flow convergence for both task modes, which indeed occurs (reduced trajec-

tory variability; see Fig. 2 and Additional file 3). The marked reduction in inter-aiming

movement time variability (CVMT; Fig. 5c) is consistent therewith. In contrast, varying

ID via target width did not (globally) affect the trajectory variability in the discrete task

mode, but resulted in a marked variability increase in the cyclic task mode: In these

conditions, at low ID and governed by a limit cycle dynamics, trajectory variability was

the lowest observed but it noticeably (but rather gradually) increased as the non-

linearity increased (RAT/MT; Fig. 3d) and a fixed point dynamics was created (Fig. 2).

We found support for the hypothesis that the variability across aiming movements is

bigger in the discrete task mode than in the cyclic one. This might result from the dy-

namical organization (i.e., the phase flow) being more or less invariant throughout

the entire trial, depending on the type of task: in the discrete task mode, the

perceptual-motor system prepares the movement for each upcoming action (leading

to more variability) while across repeated aiming movements (in the cyclic task

mode), the dynamical organization is more invariant (less variable). To further investigate

this interpretation, we calculated the Pearson correlation for the movement time variability

(CVMT) between all Task, Manipulation, and low and high ID condition pairs (NB: in order

to obtain more data points, the lowest two ID conditions and the highest two ID conditions

were taken together to form a ‘low ID’ and ‘high ID’ category). Our reasoning was that, if

tasks share specific processes relevant for their (timed) behaviour, their variability ought to

be correlated and, conversely, if not, no correlation is to be expected [34]. Accordingly, we

expected that all correlations between pairs involving a discrete and cyclic condition would

be non-significant, and that for the cyclic task the low ID – width condition would show no

significant correlation with any of the others as the dynamics in the former condition (limit

cycle) differed from the latter (fixed points).

As it can be appreciated in Fig. 6, these expectations turned out to be correct.

Further, for the rhythmic task, all pairs except for those involving the low ID – width

condition turned out significant, which fits the observation of similar dynamics (fixed

points) and the proposition of being governed by an invariant dynamics across repeti-

tive aiming movements. For the discrete task, however, the correlations were less

straightforward: the CVMT of multiple pairs correlated, but not all did, and the 2 × 2

matrix was not symmetric. We therefore abstain from any further interpretations.
Fig. 6 Pearson’s correlation r for CVMT between conditions. Black arrows indicate significant correlations
(p< .05; across correlations .41 < r< .70), the grey arrow indicates a marginal significant correlation (.1 < p< .05;
r= .36). The absence of arrows indicates that the correlation was not significant. No correlations between any of
the discrete and cyclic conditions were found; within the cyclic task mode, no correlation was found between the
low ID – width condition and the others. For the discrete task mode, several significant correlations were identified
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As discussed above, we found evidence that in a subset of these combinations limit

cycle dynamics were observed, while in another subset, fixed points regimes were found.

Some indications (not conclusive) were found that the nature of the fixed points might

have been dissimilar in the later subset dependent on the experimental factors.

Regardless, in all task and manipulation combinations, movement time increased as the

ID increased. That is, this trade-off appeared independent of the dynamical organization

underlying Fitts’ task performance. The question then arises of what could be the origin

of the increase of MT with ID? The different models available in the literature do not pro-

vide satisfying answers in this respect. For instance, the dynamical model proposed by

Mottet and Bootsma [11] fails for discrete movements—for these an N-shape in the

Hooke plane appears independent of ID. Similarly, models from the ‘corrective (sub)

movements class’ ([5, 14]; see Background) fail to deal with performances in (at least a

large part of) the limit cycle regime since no corrective sub-movements are made (accel-

eration is about highest around the targets, [11]) but MT still gets larger with increasing

ID. That is, while both models have their merits in their respective domains, neither of

them is able to explain the MT increase with increasing ID across the range of task condi-

tions that is reported here, and in the literature more at large.

Conclusions
Consistent with the Fitts’ law, movement time scaled (approximately) linearly with the

index of difficulty ID under all task and manipulation conditions. However, the system’s

functional organization underlying task performance differed both qualitatively and quan-

titatively as a function of task mode (cyclic vs. discrete) and manipulation (D vs. W).

Within the cyclic task mode, low IDs were associated with limit cycles or fixed points

dependent on whether target width or distance was manipulated, respectively. In this

respect, target width was the parameter causing a bifurcation at a critical value.

Conversely, for the discrete task mode, we did not observe such a bifurcation. Both behav-

ioural modes adhere to distinct functional organizations; for instance velocity and acceler-

ation always have to vanish at the target in discrete task mode. Consistent herewith,

analysis of movement time variability (CVMT) set apart the discrete and cyclic task mode,

even for IDs in which both task modes appeared governed by a fixed-point dynamics. We

argue that their difference is due to the inherent need for the perceptual-motor system to

instantiate every single aiming in the discrete but not cyclic task mode, thereby introdu-

cing variability at another level of the perceptual-motor organization (i.e., that of the

parameter dynamics; [32]). In addition, it cannot be ruled out that the nature of the fixed-

points, or the space within which they exist, is dissimilar across both task modes and

ID-manipulations. While our present data do not allow us to either conclusively refute or

confirm this hypothesis, the differential trajectory variability evolution as a function of the

task modes and distance versus width manipulation provides a hint thereto.

Regardless, the functional organization underlying task performance at various IDs

varied markedly as a function of task mode and manipulation. In fact, our results counter

the idea that change in a single parameter (as a function of ID) of the dynamics and/or

bifurcation structure can account for Fitts’ law. Explanations in terms of correction

strategies, however, as discussed above, also have their limitations. That is, explaining

Fitts’ law in terms of a single dynamical organization or movement strategy remains

problematic. In fact, this may indicate that a full description of Fitts’ law may require
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more than one control (or bifurcation) parameter. The remaining question, then, is which

one? We found evidence that target width, rather than task difficulty, acts as a control

parameter. No clear indication was found that target distance did so too (except for a sin-

gle participant) even though changing target distance had the opposite effect (of width)

on trajectory variability. This may be due to a differential effect of the degree of conver-

gence of the phase flow for both parameters. This, however, is of yet an open question.

Regardless, this discussion resonates with previously expressed doubts as to whether the

notion of task difficulty as quantified through target distance divided by width is appropri-

ate. For instance, Welford and colleagues proposed a definition incorporating two additive

logarithmic D and W terms [8]. Further, task difficulty is insensitive to energetic cost [35],

which is higher at the easy task difficulty spectrum. Also, anecdotal reports from our par-

ticipants suggest that subjective difficulty does not map uniquely onto the index of diffi-

culty (the low ID small width-small distance conditions were experienced as particularly

difficult). That is, the explicit identification of the nature of the fixed points in the various

task conditions as well as the control parameter(s) implicated seems of a particular inter-

est for the Fitts’ paradigm. If a second control parameter indeed exists, its identification

may well alter the notion of task difficulty as currently understood.

Methods
Thirteen (self-declared) right-handed participants (7 females; age: 29.3 ± 3.8 years)

performed aiming movements from a starting point to a target (discrete mode) or between

two targets (cyclic mode) with a hand-held stylus (18 g, 156.5 × 14.9 mm, ~1 mm

tip) across a digitizer tablet (Wacom Intuos XL, 1024 × 768 pixel resolution) under

instructions stressing both speed and accuracy. Position time series were acquired

from the tablet via custom-made software (sampled at 250 Hz). The targets were

printed in red on white A3 paper that was positioned under the transparent sheet of

the tablet. In the cyclic mode, for each condition two trial repetitions consisting of

50 horizontal reciprocal aiming movements each (i.e., 25 cycles) were performed in

the transversal plane, once starting from the left target and once from the right

target. In the discrete mode, four blocks consisting of 25 single aiming movements

were performed twice; in two blocks movements were made toward a target posi-

tioned on the right side; in the two other blocks the direction was inversed. Cyclic

trials with more than 6 errors and discrete blocks with more than 3 errors were

redone (i.e., a 12% error rate was tolerated). In both task modes target distance and

target width were manipulated independently, and chosen so as to allow for a large

sampling of distance and width, respectively. In the width manipulation, target dis-

tance was set at 20 cm, and target width varied as follows: 4.20, 2.50, 1.49, 0.88,

0.53, 0.31, and 0.19 cm. In the distance manipulation, target width was set at

0.31 cm, and target distance was varied from 1.47, 2.48, 4.17, 7.01, 11.80, 19.84, and

33.37 cm. In both cases, this resulted in seven IDs (from 3.25 to 7.75, step size

0.75), which were administered randomly. Participants were familiarized with all

task mode (discrete, cyclic) by manipulation (distance, width) conditions by

performing 5 to 10 movements (until fast and successful performance) with

ID = 3.25 and ID = 7.00. The familiarization ended when the participant reached a

stable behaviour (i.e., moving fast and not missing the target). The width and

distance manipulations were assessed in two experimental sessions lasting about 1½
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hour each. Both the width and distance manipulations, as well as the cyclic and

discrete tasks were counterbalanced across participants.

For the rhythmic movements, the peaks in the (horizontal) position time series were

taken as movement initiations and terminations. The discrete movements’ initiation

and termination were defined as the moment its (absolute) velocity exceeded versus fell

below 0.1 cm/s, respectively. For the termination, the additional criterion was used that

the movement velocity had to remain below this velocity criterion for minimally 60 ms

[5]. A secondary movement was deemed present if it lasted for minimally 100 ms, the

velocity criterion was exceeded for at least half of the burst’s time, and if the covered

distance was minimally either 2 mm or ¼ of the target width. If present, the secondary

movement’s endpoint was taken as the movement’s termination. (For movement time,

we verified whether the inclusion of the secondary movement changed the patterns of

results, which was not the case.) Movement time (MT) was defined as the average of

the temporal differences between movement termination and onset. For each move-

ment, the acceleration duration (AT) was defined as the moment of peak velocity minus

movement initiation. The ratio AT/MT (RAT/MT) measures of the degree of symmetry

of the movement velocity’s profile. Effective amplitude (Ae) was computed as the aver-

age distance traversed across repetitions, and effective target width (We) as 2 × 1.96

times the mean standard deviation at the movement terminations [36]. Next, effective

ID was calculated as IDe = log2(2Ae/We).

In order to reconstruct the vector field underlying the movements [37, 38], we com-

puted the conditional probability distributions P(x,y,t|x0,y0,t0) that indicated the prob-

ability to find the system at a state (x,y) at a time t given its state (x0, y0) at an earlier

time t0. These distributions were computed using all aiming movements in each condi-

tion using a grid size of 28 bins. Drift coefficients (i.e., the deterministic dynamics) were

computed according to:

Dx x; yð Þ ¼ lim
τ→0

1
τ ∫∫ x 0−xð ÞPðx 0; y 0; t þ τ x; y; tj Þdx 0dy

Dy x; yð Þ ¼ lim
τ→0

1
τ ∫∫ y 0−yð ÞP x 0; y 0t þ τ x; y; tj Þdx 0dyð

These coefficients are the numerical representations of the x-, and y-component of

the vector at each phase space position. From these coefficients, we computed the

angle θmax for each bin between its corresponding vector and that of each of its neigh-

bours (if existent), and extracted the corresponding maximal value in order to visualize

the phase flows in terms of so-called angle diagrams [17, 39].

We performed a principal component analysis (PCA) to investigate trajectory vari-

ability (x,y). For each participant and condition all trajectories were resampled to 100

samples, and subjected to principal component analysis [17]. A PCA was done separately

for the 50 left-to-right and 50 right-to-left aiming movements. The 1st eigenvalue λ1
was next averaged.

The ANOVA on IDe showed multiple effects, we therefore created IDe block aver-

ages of MT, RAT/MT, θmax, and λ1 that were subjected to a repeated measures ANOVA

with Task (2), Manipulation (2), and IDe (7) (i.e., a total of 28 conditions) as within

participant factors. The Greenhouse-Geisser correction was applied whenever
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necessary. Significant main effects (α = .05) were followed up by Bonferroni-corrected

post hoc tests. (For completeness, the same analyses were performed for peak velocity,

acceleration, and deceleration time; they are reported in Additional file 5, 6, 7,

respectively).

The protocol was in agreement with the Declaration of Helsinki. Informed consent

was obtained from all participants prior to the experiment.
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